Link for Incisive”

For Use with MATLAB® and Simulink®

Computation
Visualization
Programming

Simulation

User’s Guide <4\The MathWorks

Version 1

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Link for Incisive User’s Guide
© COPYRIGHT 2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Incisive® is a registered trademark of Cadence Design Systems.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1 (Release 2006b+)

Getting Started

What Is Link for Incisive? 1-2
Typical Applicationsoiiiiiiiiinnnnnnn. 1-3
Expected Usersccuiiiiiiiiiiieennnnnnnnns 14
KeyFeaturest 1-5
The Cosimulation Environment 1-6
Modes of Communication 1-8
Working with MATLAB and the HDL Simulator 1-9
Working with Simulink and the HDL Simulator 1-10

Installationand Setup 1-12
What Are Your Environment Requirements? 1-12
Deciding on a Configuration 1-14
Identifying a Server in a Network Configuration 1-16
Choosing TCP/IP Socket Ports 1-17
Checking Product Requirements 1-19
Installing Related Application Software 1-20
Installing Link for Incisive 1-20
Setting Up the HDL Simulator for Use with Link for

Incisive ... i e 1-21

Getting Help with Link for Incisive 1-25
Documentation Overviewcoiiuueenn.. 1-25
OnlineHelp i .. 1-26
Demos and Tutorials 1-26

Coding a Link for Incisive MATLAB Application

2

OVeIVICW .. it e e e 2-2

Coding HDL Designs for MATLAB Verification 2-3

Steps for Coding HDL Models 2-3

Compiling the HDL Model 2-5
Coding a MATLAB Test Bench Function 2-6
Overview of the Steps for Coding a MATLAB Test Bench
Function, 2-6
Verilog Data Type Conversionscoee.... 2-7
Naming a MATLAB Test Bench Function 2-8
Passing Parameters to and from the MATLAB Function .. 2-8
Gaining Access to and Applying Port Information 2-9
Converting Data for Manipulation 2-11
Converting Data for Return to the HDL Simulator 2-12
Coding a MATLAB Component Function 2-14
Function Definition and Parameters 2-14

Placing a MATLAB Test Bench or Component Function
on the MATLAB SearchPath 2-16

Starting and Controlling MATLAB Link Sessions

3

Overview e 3-3
Checking the MATLAB Server’s Link Status 3-5
Starting the MATLAB Server 3-7
Starting the HDL Simulator for Use with MATLAB ... 3-9

Deciding on MATLAB Link Session Scheduling
Optionst i 3-10

Controlling Callback Timing from a MATLAB Test
Bench or Component Function 3-11

vi Contents

Initializing the HDL Simulator for a MATLAB Link
Session e 3-12

Applying Stimuli with the HDL Simulator force

Command it 3-17
Running and Monitoring a MATLAB Link Session 3-19
Stopping a MATLAB Link Session 3-20

Modeling and Verifying an HDL Design with

q |

Simulink

OVerview e e 4-3
Creating a Hardware Model Design in Simulink 4-5
Handling Signal Values Across Simulators 4-7
How Simulink Drives Cosimulation Signals 4-7
Representation of Simulation Time 4-8
Handling Multirate Signals 4-15
Clock Signal Latency iiiiiio... 4-16
Block Simulation Latency 4-16
Configuring Simulink for HDL Models 4-18

Adding the HDL Representation of a Model Component

into a Simulink Model 4-19
Configuring an HDL Cosimulation Block 4-20
What Are Your HDL Cosimulation Block Requirements? .. 4-20
Opening the Block Parameters Dialog Box 4-22
Mapping HDL Signals to Block Ports 4-23
Specifying Data Types for Output Ports 4-28
Configuring the Simulink and Incisive Simulator Timing
Relationship 4-29

vii

viii

Configuring the Communication Link 4-31

Creating Optional Clocks, 4-33
Executing Tcl Commands Before and After

Cosimulation i, 4-36
Applying Your Block Parameters Configuration Settings .. 4-38

Running and Testing a Cosimulation Model in

Simulink 4-39
Using Frame-Based Processing in Cosimulation 4-40
OVeIVIEW ..ttt e e e e 4-40
Using Frame-Based Processing 4-40

Using a Value Change Dump File for Design

Verification 4-42
Generatinga VCD File i, 4-42
VCD File Format 4-45

MATLAB Functions — Alphabetical List

5

HDL Simulator Tcl Commands — Alphabetical
ist

6

Simulink Blocks — Alphabetical List

7

Index

Contents

Getting Started

What Is Link for Incisive? (p. 1-2)

Installation and Setup (p. 1-12)

Getting Help with Link for Incisive
(p. 1-25)

Identifies typical applications and
expected users, lists key product
features, describes the Link for
Incisive cosimulation environment,
and provides overviews of how
you work with the integrated tool
environment.

Explains how to install and set up
Link for Incisive.

Identifies and explains how to gain
access to available documentation
online help, demo, and tutorial
resources.

1 Getting Started

What Is Link for Incisive?

Link for Incisive® is a cosimulation interface that integrates MathWorks tools
into the Electronic Design Automation (EDA) workflow for application-specific
integrated circuit (ASIC) and field programmable gate array (FPGA)
development. The interface provides a fast bidirectional link between the
Cadence Design System’s hardware description language (HDL) simulators
(Incisive simulators) and the MathWorks products MATLAB® and Simulink®
for direct hardware design verification and cosimulation. The integration of
these tools allows users to apply each product to the tasks it does best:

¢ Incisive simulator — Hardware modeling in HDL and simulation

¢ MATLAB — Numerical computing, algorithm development, and
visualization

¢ Simulink — Simulation of system-level designs and complex models

The Link for Incisive interface consists of MATLAB functions and the HDL
simulator commands for establishing the communication links between
Incisive simulators and the MathWorks products. In addition, a library of

Simulink blocks is available for including Incisive simulator HDL designs in
Simulink models for cosimulation.

The following sections discuss

o “Typical Applications” on page 1-3

e “Expected Users” on page 1-4

¢ “Key Features” on page 1-5

¢ “The Cosimulation Environment” on page 1-6

® “Modes of Communication” on page 1-8

* “Working with MATLAB and the HDL Simulator” on page 1-9
® “Working with Simulink and the HDL Simulator” on page 1-10

1-2

What Is Link for Incisive?

Typical Applications

Link for Incisive streamlines FPGA and ASIC development by integrating
tools available for

1 Developing specifications for hardware design reference models
2 Implementing a hardware design in HDL, based on a reference model

3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks products
fit into this hardware design scenario.

1

Develop specification 2

3

MATLAB Implement design

Signal Processing Toolbox Verify design

Filter Design Toolbox

Communications Toolbox Link for Incisive

Simulink

Simulink Fixed Point

Signal Processing Blockset

Communications Blockset

Incisive Simulator

As the figure shows, Link for Incisive connects tools that are traditionally
used discretely to accomplish specific steps in the design process. By
connecting the tools, Link for Incisive simplifies verification by allowing you
to cosimulate the implementation and original specification directly. The end
result is significant time savings and the elimination of errors inherent to
manual comparison and inspection.

In addition to the preceding design scenario, Link for Incisive enables you
to use

e MATLAB or Simulink to create test signals and software test benches for
HDL code

o MATLAB or Simulink to provide a behavioral model for an HDL simulation

1 Getting Started

e MATLAB analysis and visualization capabilities for real-time insight into
an HDL implementation

® Simulink to translate legacy HDL descriptions into system-level views

Expected Users
Link for Incisive is for hardware engineers who design, implement, or verify

FPGAs and ASICs. A typical user might be responsible for any or all of the
following:

® (Create hardware reference specifications, using MATLAB or Simulink

® Develop implementations of the specifications in HDL, using Incisive
simulators

¢ Verify the implementation by comparing its results to those of the original
specification

Link for Incisive enables engineers to cosimulate and verify a design directly
between the specification and implementation, eliminating the need for
manual comparisons. Link for Incisive also allows designers to pass on
MATLAB and Simulink specifications to implementation and verification
teams, without having to first rewrite the design in HDL.

The documentation provided with Link for Incisive assumes users have a
moderate level of prerequisite knowledge in the following subject areas:

¢ Hardware design and system integration

® Verilog

¢ Incisive simulators from Cadence Design Systems, Inc.

e MATLAB

Experience with Simulink and Simulink Fixed Point is required for applying
the Simulink component of the product.

Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets is also useful:

e Signal Processing Toolbox

What Is Link for Incisive?

Filter Design Toolbox
Communications Toolbox
Signal Processing Blockset
Communications Blockset

Video and Image Processing Blockset

Key Features
Key features of Link for Incisive include

Ability to link the HDL simulator to MATLAB and Simulink for
bidirectional cosimulation, verification, and visualization

Support for Linux and Solaris platforms

Full Verilog support and support for VHDL and mixed language via Verilog
/0

MATLAB testbench capability, giving the ability to use MATLAB code
to stimulate and check HDL code

MATLAB component capability, enabling simulation of MATLAB code in
place of HDL

Frame-based simulation, providing accelerated verification (with the
Signal Processing Blockset, available separately)

User-selectable communication modes between MATLAB and Simulink
and Incisive, providing shared memory (for faster performance) and TCP/IP
sockets (for versatility)

A Simulink block for cosimulating HDL models in Simulink

A Simulink block for exporting test vectors and results as value change
dump (VCD) files

Multiple simulation options from one Simulink model, including connection
of multiple Simulink HDL cosimulation blocks to one or more Incisive
simulators

Interactive or batch mode cosimulation, debugging, testing, and verification
of HDL code from within MATLAB

1-5

1 Getting Started

1-6

® Multiple simulation options from MATLAB, including connection of
multiple MATLAB components or test benches to one or more MATLAB
servers

The Cosimulation Environment

Link for Incisive is a client/server test bench and cosimulation application.
The role that the HDL simulator plays in a Link for Incisive simulation
environment depends on whether the HDL simulator links to MATLAB or
Simulink.

MATLAB and HDL Simulator Links

When linked with MATLAB, the HDL simulator functions as the client, as
the following figure shows.

Link
SI.ncislivte Out Request »|In MATLAB
imulator Response Server
Client In [« - Out

In this scenario, a MATLAB server function waits for service requests that it
receives from an Incisive simulation session. After receiving a request, the
server establishes a communication link and invokes a specified MATLAB
function wrapper that computes data for, verifies, or visualizes the HDL
model that is under simulation in the Incisive simulator.

Note You cannot initiate Link for Incisive communication between MATLAB
and the HDL simulator from MATLAB. The MATLAB server simply responds
to function call requests that it receives from the HDL simulator.

The following figure shows how a MATLAB function wraps around and
communicates with the HDL simulator during a test bench simulation session.

What Is Link for Incisive?

MATLAB

Test Benching M-Function

Stimulus Response

Incisive Simulator

HDL Entity

Input
IN ouT I::I APguments

The MATLAB server can service multiple simultaneous HDL simulator
sessions and HDL models. However, you should follow recommended
guidelines to ensure the server can track the I/O associated with each model
and session. The following figure shows a multiple-client scenario connecting
to the server at TCP/IP socket port 4449.

Incisive Link MATLAB

; Server
Simulator Port
Client 4449

Incisive Link
Simulator
Client

Simulink and HDL Simulator Links

When linked with Simulink, the HDL simulator functions as the server, as
shown in the following figure.

Link
Incisive Request Simulink
Simulator In j Resoonse Out "Client
Server Out P »| In

1 Getting Started

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You initiate a cosimulation
session from Simulink. After a session is started, you can use Simulink and
the HDL simulator to monitor simulation progress and results. For example,
you might add signals to an Incisive simulator Wave window to monitor
simulation timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of the HDL simulator,
using unique TCP/IP socket ports.

Incisive
Simulator ik
Server Port <|-'_”>
4449) Simulink
Port Link Client
Incisive 4448
Simulator
Server

Modes of Communication

The mode of communication that Link for Incisive uses for a link between the
HDL simulator and MATLAB or Simulink somewhat depends on whether
your simulation application runs in a local, single-system configuration or in
a network configuration. If the HDL simulator and the MathWorks products
can run locally on the same system and your application requires only one
communication channel, you have the option of choosing between shared
memory and TCP/IP socket communication. Shared memory communication
provides optimal performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and
network configurations. This option offers the greatest scalability.

For configurations in which the HDL simulator and the MathWorks products
reside on different systems, each system must be configured for the Ethernet
and you must use TCP/IP socket communication.

What Is Link for Incisive?

Working with MATLAB and the HDL Simulator

When linked with MATLAB, the HDL simulator functions as the client,
initiating requests of MATLAB that focus on numerical computing, algorithm
development, and visualization. The MATLAB server, which you start with a
supplied MATLAB function, waits for connection requests from instances of
the HDL simulator running on the same or different computers. When the
server receives a request, it executes a specified wrapper MATLAB function
you have coded to perform tasks on behalf of a component in your HDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

After the server is running, you can start and configure the HDL simulator
for use with MATLAB with a supplied Link for Incisive function. Optional
parameters allow you to specify

® Tool Command Language (Tcl) commands that execute as part of startup

® A specific HDL simulator executable to start

¢ The name of an HDL simulator Tcl script file to store the complete startup

script for future use or reference

For more on configuring the HDL simulator for use with Link for Incisive, see
“Setting Up the HDL Simulator for Use with Link for Incisive” on page 1-21.

When you initiate a specific MATLAB link session, you specify parameters
that identify

® The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server

® The wrapper MATLAB function that attaches to and executes on behalf of
the HDL model

* Timing specifications and other control data that specifies when the model’s
MATLAB function is to be called

The MATLAB server can service multiple simultaneous HDL simulator
designs and clients. For more about initiating MATLAB link sessions, see
Chapter 3, “Starting and Controlling MATLAB Link Sessions”.

1-9

1 Getting Started

1-10

Working with Simulink and the HDL Simulator

When linked with Simulink, the HDL simulator functions as the server.
Using the Link for Incisive communications interface, an HDL Cosimulation
block cosimulates a hardware component by applying input signals to and
reading output signals from an HDL model under simulation in the HDL
simulator. Multiple HDL Cosimulation blocks in a Simulink model can
request the service of multiple instances of the HDL simulator, using unique
TCP/TP socket ports.

Using the Block Parameters dialog box for an HDL Cosimulation block, you
can configure

® Block input and output ports that correspond to signals (including internal
signals) of an HDL model. You can specify sample times and fixed-point
data types for individual block output ports if desired.

® Type of communication and communication settings used for exchanging
data between the simulation tools.

® Rising-edge or falling-edge clocks to apply to your model. The period of
each clock is individually specifiable.

e Tecl commands to run before and after the simulation.

Using the Link for Incisive MATLAB function nclaunch, you can start and
configure the HDL simulator with optional parameters that allow you to
specify the same behavior as when you configure the simulator for MATLAB
(see “Working with MATLAB and the HDL Simulator” on page 1-9). In
addition, you can specify the default mode of communication to be used for
the link and, if appropriate, a TCP/IP socket port. For more on configuring
the HDL simulator for use with Link for Incisive, see “Setting Up the HDL
Simulator for Use with Link for Incisive” on page 1-21.

Link for Incisive equips the HDL simulator with a set of Link for Incisive
command extensions. Using one of those commands, you execute the HDL
simulator with an instance of an HDL model for cosimulation with Simulink.
After the model is loaded, you can start the cosimulation session from
Simulink.

Link for Incisive also includes a block for generating value change dump
(VCD) files. You can use VCD files generated with this block

What Is Link for Incisive?

® To view Simulink simulation waveforms in your HDL simulation
environment

® To compare results of multiple simulation runs, using the same or different
simulation environments

® As input to post-simulation analysis tools

1-11

1 Getting Started

Installation and Setup

This section helps you to define your Link for Incisive application
environment. Topics include

¢ “What Are Your Environment Requirements?” on page 1-12

¢ “Deciding on a Configuration” on page 1-14

¢ “Identifying a Server in a Network Configuration” on page 1-16
® “Choosing TCP/IP Socket Ports” on page 1-17

¢ “Checking Product Requirements” on page 1-19

¢ “Installing Related Application Software” on page 1-20

¢ “Installing Link for Incisive” on page 1-20

e “Setting Up the HDL Simulator for Use with Link for Incisive” on page 1-21

What Are Your Environment Requirements?

As part of the installation and setup process, review the following checklist
to identify environment requirements that pertain to your Link for Incisive
application. Questions to ask yourself about configuration requirements are
in the first column of the table; go to the topic listed in the second column for
information on how to address the requirement.

Environment Requirements Checklist

Requirement For More Information, See...

Configurations

L0 Will your application use multiple communication “Deciding on a Configuration” on
links? page 1-14

O How many instances of the MATLAB server are “Deciding on a Configuration” on
required? page 1-14

O Will a MATLAB server be handling multiple HDL “Deciding on a Configuration” on
simulator client connections? If so, how many? Will page 1-14
they be from the same or different HDL simulator
sessions?

1-12

Installation and Setup

Environment Requirements Checklist (Continued)

Requirement

For More Information, See...

O

O

O

How many MATLAB functions do you need to write to
model your HDL implementation?

If your application will be using Simulink, how many
cosimulation blocks are needed? Will the blocks be
connecting to the same or different HDL simulator
sessions?

To how many HDL simulator sessions will your
Simulink model connect?

Mode of Communication

“Deciding on a Configuration” on
page 1-14

“Deciding on a Configuration” on
page 1-14

“Deciding on a Configuration” on
page 1-14

O

Is performance the highest priority for your application?
If so, can you run MATLAB and Simulink and the HDL
simulator on the same computer system?

Does your application require only one communication
link (channel) on a single computing system?

Is configuration flexibility a high priority for your
application? Does the application have growth
potential?

Do you prefer to use the TCP/IP socket mode of
communication for a single-computer configuration? If
so, do you want Link for Incisive to identify an available
socket port on the system or do you want to choose a
socket port yourself?

“Modes of Communication” on page
1-8

“Modes of Communication” on page
1-8

“Modes of Communication” on page
1-8

“Choosing TCP/IP Socket Ports” on
page 1-17

Network Configurations

O

O

O

Have you identified the computer systems that will
function as Link for Incisive servers?

What is the Internet address or host name of each
computer system that will function as a server?

Do you want Link for Incisive to identify an available
TCP/TP socket port on server systems for establishing
communication links? Instead, do you want to choose or
identify TCP/IP socket ports yourself?

“Identifying a Server in a Network
Configuration” on page 1-16

“Identifying a Server in a Network
Configuration” on page 1-16

“Choosing TCP/IP Socket Ports” on
page 1-17

1-13

1 Getting Started

1-14

Environment Requirements Checklist (Continued)

Requirement

For More Information, See...

Related Software

O

O

Is the HDL simulator installed on all systems as needed
for your application?

Is MATLAB installed on all systems

as needed for your application?

(See also HDL Simulator Setup, later in this
table.)

Does your application require the use of any toolboxes?
If so, are the toolboxes installed on all systems as
needed for your application?

Will you be using the Simulink component of Link for
Incisive? If so, are Simulink and Simulink Fixed Point
installed on all systems as needed for your application?
Are the required blocksets installed?

HDL Simulator Setup

“Installing Related Application
Software” on page 1-20

“Installing Related Application
Software” on page 1-20

“Installing Related Application
Software” on page 1-20

“Installing Related Application
Software” on page 1-20

O Will you be running the HDL simulator on a machine

that does not have MATLAB installed?

“Setting Up the HDL Simulator for
Use with Link for Incisive” on page
1-21

Deciding on a Configuration

As you consider various configurations for an application, keep the following

general guidelines in mind:

¢ Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

e TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/IP socket ports distinguish the communication links.

¢ In any configuration, an instance of MATLAB can run only one instance of
the Link for Incisive MATLAB server (hdldaemon) at a time.

Installation and Setup

® In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more HDL simulator sessions.

e HDL Cosimulation blocks in a Simulink model can connect to the same or
different HDL simulator sessions.

The following lists provide samples of valid configurations for using Incisive
simulators with MATLAB and Simulink, respectively. The scenarios apply
whether the HDL simulator is running on the same or different computing
system as MATLAB or Simulink. In a network configuration, you use an
Internet address in addition to a TCP/IP socket port to identify the servers in
an application environment.

MATLAB

The following list gives a sampling of valid configurations for using Incisive
simulators with MATLAB:

¢ An HDL simulator session linked to a MATLAB function foo through a
single instance of the MATLAB server

¢ An HDL simulator session linked to multiple MATLAB functions (for
example, foo and bar) through a single instance of the MATLAB server

® An HDL simulator session linked to a MATLAB function foo through
multiple instances of the MATLAB server (each running within the scope
of a unique MATLAB session)

¢ Multiple HDL simulator sessions each linked to a MATLAB function foo
through multiple instances of the MATLAB server (each running within
the scope of a unique MATLAB session)

e Multiple HDL simulator sessions each linked to a different MATLAB
function (for example, foo and bar) through the same instance of the
MATLAB server

¢ Multiple HDL simulator sessions each linked to MATLAB function foo
through a single instance of the MATLAB server

1-15

1 Getting Started

1-16

Note Although multiple HDL simulator sessions can link to the same
MATLAB function in the same instance of the MATLAB server, as the

last configuration scenario suggests, such links are not recommended. If
the MATLAB function maintains state (for example, maintains global or
persistent variables), you may experience unexpected results because the
MATLAB function does not distinguish between callers when handling input
and output data. If you must apply this configuration scenario, consider
deriving unique instances of the MATLAB function to handle requests for
each HDL model.

Simulink

The following list gives a sampling of valid local configurations for using
Simulink with Incisive simulators:

¢ An HDL Cosimulation block in a Simulink model linked to a single HDL
simulator session

e Multiple HDL Cosimulation blocks in a Simulink model linked to the same
HDL simulator session

¢ An HDL Cosimulation block in a Simulink model linked to multiple HDL
simulator sessions

e Multiple HDL Cosimulation blocks in a Simulink model linked to different
HDL simulator sessions

Identifying a Server in a Network Configuration

If you need to set up your Link for Incisive application such that the Incisive
simulator and the MathWorks products reside on different systems, you must
set up the systems to use

e TCP/IP networking protocol

e Link for Incisive TCP/IP socket mode of communication
As part of your application setup, you must identify

¢ The Internet address or host name of the computer running the server
component of your application

Installation and Setup

¢ The TCP/IP socket port number or service name (alias) to be used for Link
for Incisive connections

For guidelines on choosing TCP/IP socket ports, see “Choosing TCP/IP Socket
Ports” on page 1-17.

Choosing TCP/IP Socket Ports

To use the TCP/IP socket communication, you must choose a TCP/IP socket
port number that is available in your computing environment for use by

the Link for Incisive client and server components. The two components

use the port number to establish a TCP/IP connection. Port numbers are
particularly important for applications that implement multiple clients and
servers and use TCP/IP socket communication on a single node. The port
numbers uniquely identify each client and server and enable connections only
between components sharing the same port number. For remote network
configurations, the Internet address helps distinguish multiple connections.

A TCP/TP socket port number (or alias) is a shared resource. To avoid potential
collisions, particularly on servers, you should use caution when choosing a
port number for your application. Consider the following guidelines:

e If you are setting up a link for MATLAB, consider the Link for Incisive
option that directs the operating system to choose an available port number
for you. To use this option, specify 0 for the socket port number.

® Choose a port number that is registered for general use. Registered ports
range from 1024 to 49151.

¢ If you do not have a registered port to use, review the list of assigned
registered ports and choose a port in the range 5001 to 49151 that is not in
use. Ports 1024 to 5000 are also registered, however operating systems use
ports in this range for client programs.

® Choose a port number that does not contain patterns or have a known
meaning. That is, avoid port numbers that more likely to be used by others
because they are easier to remember.

* Do not use ports 1 to 1023. These ports are reserved for use by the Internet
Assigned Numbers Authority (IANA).

1-17

1 Getting Started

1-18

® Avoid using ports 49152 through 65535. These are dynamic ports that

operating systems use randomly. If you choose one of these ports, you risk a
potential port conflict.

On the Windows platform, do not choose a filtered TCP/IP port. The
Windows TCP/IP port filtering mechanism allows disabling access to
selected ports for security purposes. TCP/IP port filtering on either the
client or server side can cause the Link for Incisive interface to fail to make
a connection.

In such cases the error messages displayed by the Link for Incisive indicate
the lack of a connection, but do not explicitly indicate the cause.

In MATLAB, checking the server status at this point indicates that the
server is running with no connections:

x=hdldaemon('status')
HDLDaemon server is running with O connections
X=

4449

If you suspect that your chosen socket port is filtered, you can check it as
follows:

a From the Windows Start menu, select Settings > Network
Connections.

b Select Local Area Connection from the Network and Dialup
Connections window.

¢ From the Local Area Connection dialog, select
Properties > Internet Protocol (TCP/IP). From there,
select Properties > Advanced > Options. Finally, select TCP/IP
filtering > Properties.

d If your port is listed in the TCP/IP filtering>Properties dialog, you
should select an unfiltered port. The easiest way to do this is to specify 0
for the socket port number to let the Link for Incisive choose an available
port number for you.

Installation and Setup

Note The socket port resource is associated with the server component of a
Link for Incisive configuration. That is, if you use MATLAB in a test bench
configuration, the socket port is a resource of the system running MATLAB. If
you use Simulink in a cosimulation configuration, the socket port is a resource
of the system running the HDL simulator.

Checking Product Requirements
Link for Incisive requires the following:

Platform Linux 32 & 64

Solaris 32

Windows 32 (for MATLAB and Simulink)
Application software Incisive HDL Simulator, Incisive Design

Team Simulator, or Incisive Enterprise
Specman Simulator. Visit the MathWorks
Link for Incisive requirements page for
specific versions supported with the current
release of Link for Incisive.

MATLAB

Additional application Simulink
software required for o, 1.0y pived Point
cosimulation with

Simulink Fixed Point Toolbox

1-19

http://www.mathworks.com/products/incisive/requirements.html

1 Getting Started

1-20

Optional application Communications Blockset

software Signal Processing Blockset
Filter Design Toolbox
Signal Processing Toolbox

Video and Image Processing Blockset

Note Many of the Link for Incisive demos
require one or more of the above.

Platform-specific The Link for Incisive shared libraries

software (liblfihdls*.so, liblfihdlc*.so) are
built using the gcc included in the Incisive
platform distribution. If you are linking your
own applications into the HDL simulator,
the recommendation is that you also build
against this gcc. See the HDL simulator
documentation for more details about how to
build and link your own applications.

Installing Related Application Software

Based on your configuration decisions and the software required for your
Link for Incisive application, identify software you need to install and where
you need to install it. For example, if you need to run multiple instances of
the Link for Incisive MATLAB server, you need to install MATLAB and any
applicable toolbox software on multiple systems. Each instance of MATLAB
can run only one instance of the server.

For details on how to install an Incisive simulator, see the installation
instructions for that product. For information on installing MathWorks
products, see the MATLAB installation instructions.

Installing Link for Incisive

Based on your configuration decisions, identify systems on which you need
to install Link for Incisive. Install Link for Incisive on each system running

Installation and Setup

MATLAB that requires a communication channel for the Incisive simulator
and MATLAB or Simulink cosimulation.

For details on how to install Link for Incisive, see the MATLAB installation
instructions.

Setting Up the HDL Simulator for Use with Link for
Incisive

You can choose to have the HDL simulator run on the same machine as
MATLAB or on a separate machine.

¢ If you choose the same machine, then you must run nclaunch from the
MATLAB prompt at least once. This command creates a Tecl script that
sets up Link for Incisive commands for use with Incisive simulators. See
“Setting Up Link for Incisive for Use with the Incisive Simulator on the
Same Machine as MATLAB” on page 1-21.

¢ If you choose to use a different machine, follow the instructions in “Setting
Up Link for Incisive for Use with the Incisive Simulator on a Separate
Machine from MATLAB” on page 1-22.

Setting Up Link for Incisive for Use with the Incisive Simulator
on the Same Machine as MATLAB

After all the required software is installed, set up the Incisive simulator so
that it is always ready for use with MATLAB and Simulink and so that you
can invoke the HDL simulator outside of MATLAB by creating a specialized
Tel startup script. The first time you want to connect MATLAB or Simulink
and an Incisive simulator through Link for Incisive, use the nclaunch
command with the following arguments.

nclaunch ('tclstart', 'puts "Initializing Link for Incisive",
'startupfile', '1fiinit', 'starthdlsim', 'no')

Where 1fiinit is the name you choose for the Tcl startup script. The property
name/value pair 'starthldsim' and 'no' indicate to the nclaunch function
not to start the HDL simulator when this line is executed.

1-21

1 Getting Started

1-22

After the Tcl script has been created, you can launch the Incisive simulator
from outside of MATLAB and still have access to Link for Incisive commands

by typing:

%stclsh
source tclscript
hdlsimmatlab arguments

Where tclscript is the name of the script created with nclaunch (1fiinit
in this example). hdlsimulink can also be used in place of hdlsimmatlab.

Setting Up Link for Incisive for Use with the Incisive Simulator
on a Separate Machine from MATLAB

If you are running the Incisive simulator on a machine that does not have
MATLAB or if you are interested in setting up your own scripting for the
building and running of the Incisive simulator, you must provide the Incisive
simulator with the libraries and configuration information it needs to
communicate with MATLAB.

Every time you start the Incisive simulator, and want it to communicate with
MATLAB, you must run ncsim with the appropriate arguments, as shown
in the following procedure.

Note This setup is supported for the platform configurations as described
in the MathWorks Link for Incisive product page.

Copying Libraries and Creating Simulation Requirements.
1 On the machine with MATLAB, go to the root directory for Link for Incisive:

MATLABROOT/toolbox/incisive/arch/

Where arch is the system type of the platform running the HDL simulator:
g1lnx86, glnxa64, or sol2.

http://www.mathworks.com/products/incisive/

Installation and Setup

Note Ifyou are running ncsim in 32-bit mode on a 64-bit Linux platform,
copy the libraries from glnx86.

2 Copy all the shared libraries from this directory into the desired destination
directory on the machine running the Incisive simulator.

3 Create a text file that includes the following lines:

proc nomatlabtb {args} {call nomatlabtb $args}
proc matlabtb {args} {call matlabtb $args}

proc matlabcp {args} {call matlabcp $args}

proc matlabtbeval {args} {call matlabtbeval $args}

You may give the text file any valid file name.

4 Update your scripts, makefiles, or other means of invoking the simulator
to include the following arguments to ncsim, where IUS_VERSION is
the release number of your Incisive simulator installation (e.g., 05.70),
yourpath is the Link for Incisive root directory in the first step, and
filename is the name of the text file you created in step 3:

a For the link to MATLAB (matlabcp, matlabtb):

-loadcfc /yourpath/liblfihdlc_IUS VERSION:matlabclient
-input filename

b For the link to Simulink:

-loadvpi /yourpath/liblfihdls_IUS VERSION:simlinkserver
+socket=socketNumber

Note If yourpath is pwd, reference it as . /1iblfihds.

1-23

1 Getting Started

1-24

Note The Link for Incisive shared libraries were built against the GCC
libraries included with the Incisive platform distribution. It is required that
your LD_LIBRARY_PATH specify the location of these libraries as explained
in the Cadence documentation.

Here is an example for properly setting up the glnxaé4 architecture in a csh:

[)

% setenv LD_LIBRARY_PATH install_dir/tools/lib/64bit:\
install_dir/tools/systemc/gcc/64bit/install/1lib64

Getting Help with Link for Incisive

Getting Help with Link for Incisive
The following sections explain how to get help with using Link for Incisive:

® “Documentation Overview” on page 1-25
® “Online Help” on page 1-26

® “Demos and Tutorials” on page 1-26

Documentation Overview
The following documentation is available with this product.

Title Description

Getting Started Explains what the product is, the
steps for installing and setting
it up, how you might apply it to
the hardware design process, and
how to gain access to product
documentation and online help.

Coding a Link for Incisive MATLAB Explains how to code HDL models

Application and MATLAB functions for Link
for Incisive MATLAB applications.
Provides details on how the Link for
Incisive interface maps HDL data
types to MATLAB data types and

vice versa.
Starting and Controlling MATLAB Explains how to start and control
Link Sessions the HDL simulator and MATLAB
test bench and component sessions.
Modeling and Verifying an HDL Explains how to use the HDL
Design with Simulink simulator and Simulink for

cosimulation modeling.

MATLAB Functions — Alphabetical Describes Link for Incisive functions
List for use with MATLAB.

1-25

1 Getting Started

1-26

Title Description

HDL Simulator Tcl Commands — Describes Link for Incisive Tecl

Alphabetical List commands for use with the HDL
simulator.

Simulink Blocks — Alphabetical List Describes Link for Incisive blocks for
use with Simulink.

Online Help

The following online help is available:

¢ Online help in the MATLAB Help browser. Click the Link for Incisive
product link in the browser’s Contents.

e M-help for Link for Incisive MATLAB functions. This help is accessible
with the MATLAB help command. For example, enter the command line
help nclaunch.

¢ Block reference pages accessible through the Simulink interface.

Demos and Tutorials

Link for Incisive provides demos and tutorials to help you get started. The
demos give you a quick view of the product’s capabilities and examples of how
you might apply the product. You can run them with limited product exposure.
Tutorials provide procedural instruction on how to apply the product.

To see a list of Link for Incisive demos and tutorials that you can run, type the
following at a MATLAB command prompt:

Getting Help with Link for Incisive

>> demos

Select Toolboxes then “Link for Incisive” from the navigational pane.

1-27

1 Getting Started

1-28

Coding a Link for Incisive
MATLAB Application

Overview (p. 2-2)

Coding HDL Designs for MATLAB
Verification (p. 2-3)

Compiling the HDL Model (p. 2-5)

Coding a MATLAB Test Bench
Function (p. 2-6)

Coding a MATLAB Component
Function (p. 2-14)

Placing a MATLAB Test Bench
or Component Function on the
MATLAB Search Path (p. 2-16)

Provides an overview of MATLAB
test bench and component functions,
and of the steps involved in coding
a Link for Incisive MATLAB
application.

Explains how to code an HDL
design to be verified in the MATLAB
environment.

Explains how to compile an HDL
design.

Explains how to code a MATLAB
function to verify or visualize an
HDL design.

Explains how to code a MATLAB
component function.

Explains how to place a MATLAB
function on the MATLAB search
path.

2 Coding a Link for Incisive MATLAB Application

2-2

Overview

Link for Incisive supports two types of MATLAB functions that interface
to HDL models:

o Test bench functions are functions that let you verify the performance of
the HDL model, or of components within the model. A test bench function
drives values onto signals connected to input ports of an HDL design under
test, and receives signal values from the output ports of the module.

o MATLAB component functions are functions that simulate the behavior of
components in the HDL model. A stub module (providing port definitions
only) in the HDL model passes its input signals to the MATLAB component
function. The MATLAB component processes this data and returns the
results to the outputs of the stub module. A MATLAB component typically
provides some functionality (such as a filter) that is not yet implemented in
the HDL code. La La LA.

The programming, interfacing, and scheduling conventions for test bench
functions and MATLAB component functions are almost identical. Most of
this chapter focuses on test bench functions. The test bench section is followed
by a discussion of MATLAB component functions and how to use them.

This section provides an overview of the steps required to develop an HDL
model for use with MATLAB and Link for Incisive. To program the HDL
component of a Link for Incisive application, you must perform the following
tasks:

1 Code the HDL model for MATLAB verification.
2 Compile the HDL model.
3 Code the required MATLAB test bench or MATLAB component functions.

4 Place the MATLAB functions on the MATLAB search path.

Coding HDL Designs for MATLAB Verification

Coding HDL Designs for MATLAB Verification

The most basic element of communication in the Link for Incisive interface is
the HDL model. The interface passes all data between the HDL simulator
and MATLAB as port data. Link for Incisive works with any existing HDL
model. However, when coding an HDL design that is targeted for MATLAB
verification, you should consider its name, the types of data to be shared
between the two environments, and the direction modes. The following
sections cover these topics:

e “Steps for Coding HDL Models” on page 2-3

Note Link for Incisive currently supports only Verilog, although
mixed-language simulations should be possible as long as all cosimulation
signals are in Verilog modules.

Steps for Coding HDL Models

To code an HDL model for verification in the MATLAB environment, perform
the following steps:

1 Choose an HDL model name.

Consider choosing a model name that can be used as a valid MATLAB
function name. By default, the Link for Incisive interface assumes that an
HDL model and its simulation function share the same name. If the model
and function names do not match, you must specify the MATLAB function
name explicitly when you initialize a MATLAB link session (a MATLAB
test bench or component function) with the HDL simulator matlabtb,
matlabtbeval, or matlabcp command.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

2 Specify required ports.

3 Specify an HDL data type that is supported by the Link for Incisive
interface for each port.

2-3

2 Coding a Link for Incisive MATLAB Application

In your module definition, you must define each port, which you plan to
test with MATLAB, with an HDL port data type that is supported by the
Link for Incisive interface. The interface can convert data of the following
Verilog port types to comparable MATLAB types:

* reg
® integer
® wire

For details on how Link for Incisive converts data types for the MATLAB
environment, see “Verilog Data Type Conversions” on page 2-7.

Note If you use unsupported types, Link for Incisive issues a warning
and ignores the port at run time.

Compiling the HDL Model

Compiling the HDL Model

After you create or edit your HDL design source files, use the HDL simulator
tools to compile and elaborate the code. The Incisive simulator allows

for 1-step and 3-step processes for Verilog compilation, elaboration, and
simulation.

The following Incisive simulator command compiles and elaborates the HDL
design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v

The following sequence of Incisive simulator commands performs all the same
processes in multiple steps:

sh> ncvlog linedebug test.v
sh> ncelab access +rwc test
sh> ncsim test

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. The previous example demonstrates
how to provide read/write access to all signals in your design. For higher
performance, you want to provide access only to those signals used in
cosimulation. See the description of the +access flag to ncverilog and the
-access argument to ncelab for details.

See the Incisive platform documentation for complete details on compiling
and elaborating your HDL designs. For more examples, see the Link for
Incisive demos and tutorials.

2 Coding a Link for Incisive MATLAB Application

2-6

Coding a MATLAB Test Bench Function

When coding a MATLAB function that is to verify or visualize an HDL model,
you must adhere to specific coding conventions, understand the data type
conversions that occur, and program data type conversions for operating on
data and returning data to the HDL simulator. The following sections cover
these topics:

e “Overview of the Steps for Coding a MATLAB Test Bench Function” on
page 2-6

e “Verilog Data Type Conversions” on page 2-7

¢ “Naming a MATLAB Test Bench Function” on page 2-8

® “Passing Parameters to and from the MATLAB Function” on page 2-8

® “Gaining Access to and Applying Port Information” on page 2-9

¢ “Converting Data for Manipulation” on page 2-11

¢ “Converting Data for Return to the HDL Simulator” on page 2-12

Overview of the Steps for Coding a MATLAB Test
Bench Function
To code a MATLAB function that is to verify or visualize an HDL model,

1 Understand how Link for Incisive converts HDL model data (Verilog) for
use in the MATLAB environment.

2 Name the MATLAB test function. Consider naming it with the name of the
HDL model the function is to test.

3 Define expected parameters in the function definition line.
4 Determine the types of port data being passed into the function.

5 Extract and, if appropriate for the simulation, apply information received
in the portinfo structure.

6 Convert data for manipulation in the MATLAB environment, as necessary.

7 Convert data that needs to be returned to the HDL simulator.

Coding a MATLAB Test Bench Function

Verilog Data Type Conversions

The Link for Incisive interface converts Verilog module data to types that
apply in the MATLAB environment. To program a MATLAB function for a
Verilog model, you must understand the type conversions required by your
application.

The data types of arguments passed in to the function determine

® The types of conversions required before and after data is manipulated

® The types of conversions required to return data to the Incisive simulator
The following table summarizes how Link for Incisive converts supported
Verilog data types to MATLAB types. Only scalar data types are supported
for Verilog.

Verilog-to-MATLAB Data Type Conversions

Verilog Types... Converts to...

wire, reg A character or a column vector of
characters that matches the character
literal for the desired logic states
(bits).

integer A 32-element column vector of
characters that matches the character
literal for the desired logic states
(bits).

Array Indexing Differences Between MATLAB and HDL

MATLAB indexes array elements by using a column-major numbering
scheme, starting with column 1. Thus, MATLAB internally stores data
elements from the first column first, the second column second, and so on
through the last column. This storage alignment reverses the order of indexes
between MATLAB and HDL.

2-7

2 Coding a Link for Incisive MATLAB Application

Naming a MATLAB Test Bench Function

You can name and specify a MATLAB test bench function however you like,
so long as you adhere to MATLAB function and file naming guidelines. By
default, the Link for Incisive interface assumes the name for a MATLAB
function matches the name of the HDL model that the function verifies or
visualizes.

For details on MATLAB function naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

Passing Parameters to and from the MATLAB Function

The Link for Incisive interface expects a MATLAB test bench function to be
defined with the following function definition line:

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

The data passed into the function through the output parameters is defined by
the structure of the corresponding HDL model. The function parameters are

® iport — Structure that drives (by deposit) values onto signals connected to
ports of the associated HDL model.

* tnext (optional) — Specifies time at which the MATLAB callback function
is executed. This parameter should be initialized to an empty value ([]). If
it is not subsequently updated, no new entries are added to the simulation
schedule. By default, time is represented in seconds. The interface accepts
64-bit integers, which are interpreted as multiples of the HDL simulator
resolution limit.

® oport — Structure that receives signal values from the output ports
defined for the associated HDL model at the time specified by tnow.

* tnow — Receives the simulation time at which the MATLAB function
is called. By default, time is represented in seconds. The interface also
supports full 64-bit time resolution. For more information see “Starting
the MATLAB Server” on page 3-7.

® portinfo — For the first call to the function (at the start of the simulation)
only, receives a structure whose fields describe the ports defined for the
associated HDL model. For each port, the portinfo structure passes
information such as the port’s type, direction, and size. The information

Coding a MATLAB Test Bench Function

passed to this parameter is useful for validating the module under test.
You can use the port information to create a generic MATLAB function that
operates differently depending on the port information supplied at startup.

Note Note that the function outputs must be initialized to empty values, as
in the following code example:

tnext [1;
iport = struct();

Recommended practice is to initialize the function outputs at the beginning of
the function.

For more information on using tnext and tnow for simulation scheduling, see
“Deciding on MATLAB Link Session Scheduling Options” on page 3-10 and
“Controlling Callback Timing from a MATLAB Test Bench or Component
Function” on page 3-11. For more information on port data, see “Gaining
Access to and Applying Port Information” on page 2-9.

Gaining Access to and Applying Port Information

The Link for Incisive interface passes information about the HDL design
under test in the portinfo structure. The portinfo structure is passed as
the third argument to the function. It is passed only in the first call to your
MATLAB function. The information passed in the portinfo structure is
useful for validating the module under simulation. You could use the port
information to create a generic MATLAB function that operates differently
depending on the port information supplied at startup. The information

is supplied in three fields, as indicated below. The content of these fields
depends on the type of ports defined for the HDL model.

portinfo.field?.field2.field3

The following table lists possible values for each field and identifies the port
types for which the values apply.

2 Coding a Link for Incisive MATLAB Application

HDL Port Information

Field... | Can Which Indicates... And Applies to...
Contain...
field1 | in The port is an input port | All port types
out The port is an output All port types
port
inout The port is a All port types

bidirectional port

tscale The simulator resolution | All types
limit in seconds as
specified in the HDL

simulator
field2 | portname The name of the port All port types
field3 | type The port type All port types

For Verilog,
‘verilog_logic'
identifies port types
reg, wire, integer

size (Verilog) The size of the | All port types
bit vector containing the
data

label (Verilog) The string (Verilog) All port types
‘01zX'

To use portinfo in your MATLAB function to verify port data, do the
following:

1 Check whether portinfo data has been passed with a call to the MATLAB
function nargin. For example:

if(nargin == 3),

2 If data has been passed, you can then verify it. The following code fragment
checks whether the resolution limit for time has been set to 1 ns:

2-10

Coding a MATLAB Test Bench Function

tscale = portinfo.tscale;

if abs(tscale - 1e-9) > eps,

error('This test requires a resolution limit of 1 ns');
end

Converting Data for Manipulation

Depending on how your simulation MATLAB function uses the data it
receives from the HDL simulator, the function may need to convert data to a
different type before manipulating it. The following table lists circumstances
under which such conversions are required.

Required Data Conversions

If the Function Needs | Then...

to...

Compute numeric data Use the double function to convert the
that is received as a type | data to type double before performing the
other than double computation. For example:

datas(inc+1) = double(idata);

2-11

2 Coding a Link for Incisive MATLAB Application

2-12

Required Data Conversions (Continued)

If the Function Needs
'o...

Then...

Convert a bit vector to an
unsigned integer

Use the bin2dec function to convert the data to
an unsigned decimal value. For example:

uval = bin2dec(oport.val')

This example assumes the bit vector is composed
of the character literals '1' and '0' only. These
are the only two values that can be converted to
an integer equivalent.

Convert a bit vector to a
signed integer

Use the following application of the bin2dec
function to convert the data to a signed decimal
value. For example:

suval =
bin2dec(oport.val')-2"1length(oport.val);

This example assumes the bit vector is composed
of the character literals '1' and '0' only. These
are the only two values that can be converted to
an integer equivalent.

Converting Data for Return to the HDL Simulator

If your simulation MATLAB function needs to return data to the HDL
simulator, it may be necessary for you to first convert the data to a type
supported by the Link for Incisive interface. The following tables list
circumstances requiring such conversions for Verilog.

Coding a MATLAB Test Bench Function

Verilog Conversions for Incisive Simulators

To Return Data to Then...

an input Port of

Type‘..

reg, wire Declare the data as a character or a column vector
of characters that matches the character literal for
the desired logic state ('0' or '1'). For example:

iport.bit = '1';

integer Declare the data as a 32-element column vector
of characters (as defined above) with one bit per
character.

2-13

2 Coding a Link for Incisive MATLAB Application

2-14

Coding a MATLAB Component Function

This section discusses the syntax of a MATLAB component function and the
relationship of the function to its associated HDL design.

Function Definition and Parameters
The syntax of a MATLAB component function is

function [oport, tnext] = MyFunctionName (iport, tnow, portinfo)
The function returns the following outputs:

® oport — Structure that drives (by deposit) values onto signals connected to
output ports of the associated HDL design.

® tnext (optional) — Specifies the time at which the HDL simulator
schedules the next callback to MATLAB. tnext should be initialized to an
empty value ([]). If tnext is not subsequently updated, no new entries
are added to the simulation schedule. In that case, callback scheduling is
controlled by the matlabcp command.

For more information see “Controlling Callback Timing from a MATLAB

Test Bench or Component Function” on page 3-11.

It is strongly recommended that you initialize the function outputs to empty
values at the beginning of the function as in the following example:

tnext = [];
oport = struct();

The following parameters are passed to the function:

® iport — Structure that receives signal values from the input ports defined
for the associated HDL design at the time specified by tnow.

® tnow — Receives the simulation time at which the MATLAB function is
called. By default, time is represented in seconds. For more information see
“Controlling Callback Timing from a MATLAB Test Bench or Component
Function” on page 3-11.

Coding a MATLAB Component Function

® portinfo — For the first call to the function only (at the start of the
simulation) , portinfo receives a structure whose fields describe the
ports defined for the associated HDL design. For each port, the portinfo
structure passes information such as the port’s type, direction, and size.
You can use the port information to create a generic MATLAB function that
operates differently depending on the port information supplied at startup.
For more information on port data, see “Gaining Access to and Applying
Port Information” on page 2-9.

For more information on using tnext and tnow for simulation scheduling, see
“Deciding on MATLAB Link Session Scheduling Options” on page 3-10.

Note The input/output arguments (iport and oport) for a MATLAB
component function are the reverse of the port arguments for a MATLAB test
bench function. Thus, the MATLAB component function returns signal data to
the outputs, and receives data from the inputs, of the associated HDL design.

The next section provides an example of how to use the parameters of a
MATLAB component function.

2-15

2 Coding a Link for Incisive MATLAB Application

2-16

Placing a MATLAB Test Bench or Component Function on
the MATLAB Search Path

The MATLAB function associated with an HDL design must be on the
MATLAB search path or reside in the current working directory. To verify
whether the function is accessible, use the MATLAB which function. The
following call to which checks whether the function MyVerilogFunction is on
the MATLAB search path:

>> which MyVerilogFunction
D:\work\incisive\MySym\MyVerilogFunction.m

If the specified function is on the search path, which displays the complete
path to the function’s M-file. If the function is not on the search path, which
informs you that the file was not found.

To add a MATLAB function to the MATLAB search path, open the Set
Path window by clicking File > Set Path, or use the addpath command.
Alternatively, for temporary access, you can change the MATLAB working
directory to a desired location with the cd command.

Starting and Controlling
MATLAB Link Sessions

Overview (p. 3-3)

Checking the MATLAB Server’s
Link Status (p. 3-5)

Starting the MATLAB Server (p. 3-7)

Starting the HDL Simulator for Use
with MATLAB (p. 3-9)

Deciding on MATLAB Link Session
Scheduling Options (p. 3-10)

Controlling Callback Timing from a
MATLAB Test Bench or Component
Function (p. 3-11)

Initializing the HDL Simulator for a
MATLAB Link Session (p. 3-12)

Applying Stimuli with the HDL
Simulator force Command (p. 3-17)

Provides an overview of the steps for
starting and controlling a MATLAB
link session.

Explains how to check the status of
the MATLAB server.

Explains how to start the MATLAB
server.

Explains how to start the HDL
simulator for use with MATLAB.

Describes different ways of
scheduling the invocations of a
MATLAB test bench or component
function.

Explains how to control callback
timing from a MATLAB test bench
or component function.

Explains how to initialize the HDL
simulator for use with MATLAB as
a link session tool.

Explains how to apply MATLAB link
session stimuli with HDL simulator
force commands.

3 Starting and Controlling MATLAB Link Sessions

Running and Monitoring a MATLAB
Link Session (p. 3-19)

Stopping a MATLAB Link Session
(p. 3-20)

3-2

Explains how to run and monitor a
MATLAB link session.

Explains how to stop a MATLAB
link session.

Overview

Overview

Link for Incisive offers flexibility in how you start and control an HDL model
test bench or component session with MATLAB. A MATLAB link session is
the application of a matlabtb, matlabtbeval, or matlabcp function. A session
can consist of a single function invocation, a series of timed invocations, or
invocations based on timing data returned by a MATLAB function to the
HDL simulator.

This chapter helps you determine what your application’s scheduling
requirements might be, explains how to start the most basic simulation, and
explains how to apply available scheduling mechanisms for finer levels of test
bench or component control.

To start and control the execution of a simulation in the MATLAB
environment, perform the following tasks:

1 Check the MATLAB server’s link status. (See “Checking the MATLAB
Server’s Link Status” on page 3-5.)

2 Start the MATLAB server. (See “Starting the MATLAB Server” on page
3-7.)

3 Launch the HDL simulator with the compiled and elaborated model for use
with MATLAB. (See “Starting the HDL Simulator for Use with MATLAB”
on page 3-9.)

4 Schedule invocations of the MATLAB test bench or component function.
(See “Deciding on MATLAB Link Session Scheduling Options” on page
3-10.)

5 Control callback timing from the MATLAB test bench or component
function. (See “Controlling Callback Timing from a MATLAB Test Bench or
Component Function” on page 3-11.)

6 Initialize the HDL simulator for use with MATLAB as a link session tool.
(See “Initializing the HDL Simulator for a MATLAB Link Session” on
page 3-12.)

7 Apply MATLAB link session stimuli. (See “Applying Stimuli with the HDL
Simulator force Command” on page 3-17.)

3-3

3 Starting and Controlling MATLAB Link Sessions

8 Run and monitor the MATLAB link session. (See “Running and Monitoring
a MATLAB Link Session” on page 3-19.)

9 Stop a MATLAB link session. (See “Stopping a MATLAB Link Session
” on page 3-20.)

Each of these steps is described in more detail in this chapter.

A complete example of starting and controlling a MATLAB component session
appears in the oscillator filter demo.

3-4

Checking the MATLAB Server's Link Status

Checking the MATLAB Server’s Link Status

The first step to starting an HDL simulator and MATLAB link session is to
check the MATLAB server’s link status. Is the server running? If the server is
running, what mode of communication and, if applicable, what TCP/IP socket
port is the server using for its links? You can retrieve this information by using
the MATLAB function hdldaemon with the 'status' option. For example:

hdldaemon('status')

The function displays a message that indicates whether the server is running
and, if it is running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections
If the server is not running, the message reads
HDLDaemon is NOT running

To determine the mode of communication and TCP/IP socket port in use,
assign the return value of the function call to a variable. For example:

x=hdldaemon('status')
HDLDaemon socket server is running on port 4449 with 0 connections
X:
comm: 'sockets'
connections: 0
ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no connections. If a
shared memory link is in use, the value of comm is 'shared memory' and the
value of ipc_id is a file system name for the shared memory communication
channel. For example:

x=hdldaemon('status')
HDLDaemon shared memory server is running with O connections
X:

comm: 'shared memory'

3 Starting and Controlling MATLAB Link Sessions

connections:
ipc_id:

0
[1x45 char]

Starting the MATLAB Server

Starting the MATLAB Server

Start the MATLAB server as follows:

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether Link for Incisive
is to use shared memory or TCP/IP socket communication.

Use the following syntax:

hdldaemon('PropertyName', PropertyValue...)

Note The communication mode that you specify (shared memory or
TCP/IP sockets) must match what you specify for the communication
mode when you initialize the HDL simulator for use with the matlabtb,
matlabtbeval, or matlabcp HDL simulator command.

In addition, if you specify TCP/IP socket mode, the socket port that you
specify with this function and the HDL simulator command must match.

Link for Incisive returns time values in seconds.

The following function call starts the server in TCP/IP socket mode, using
port number 4449.

hdldaemon('socket', 4449)

You also can start the server from a script. Consider the following function
call sequence:

dstat = hdldaemon('socket', 0)
portnum = dstat.ipc_id

The first call to hd1daemon specifies that the server use TCP/IP communication
with a port number that the operating system identifies and returns
connection status information, including the assigned port number, to dstat.

3 Starting and Controlling MATLAB Link Sessions

The statement on the second line assigns the socket port number to portnum
for future reference.

For more information on modes of communication, see “Choosing TCP/IP
Socket Ports” on page 1-17. For more information on establishing the HDL
simulator end of the communication link, see “Initializing the HDL Simulator
for a MATLAB Link Session” on page 3-12.

Starting the HDL Simulator for Use with MATLAB

Starting the HDL Simulator for Use with MATLAB

After you compile and elaborate your model, start the HDL simulator from
outside of MATLAB by calling the HDL simulator Tcl commandhdlsimmatlab
from inside the HDL simulator.

First, in the OS shell type:

% simvision -input tclscript

where tclscript is the name of the Tcl startup script you created when
setting up Link for Incisive. See “Setting Up Link for Incisive for Use with the
Incisive Simulator on the Same Machine as MATLAB” on page 1-21.

Next, at the SimVision prompt type:

SimVision> hdlsimmatlab -gui component_instance

where component_instance is the instance of the component you created for
this particular link session.

3 Starting and Controlling MATLAB Link Sessions

3-10

Deciding on MATLAB Link Session Scheduling Options

A MATLAB link session is the application of a matlabtb, matlabtbeval, or
matlabcp function. By default, Link for Incisive invokes a MATLAB test
bench or component function once (when time equals 0). If you want to apply
more control and execute the MATLAB function more than once, decide on
scheduling options that specify when and how often Link for Incisive is to
invoke the relevant MATLAB function. Depending on your choices, you may
need to modify the function or specify specific arguments when you initiate
a MATLAB link session with the matlabtb, matlabtbeval, or matlabcp
command.

You can schedule a MATLAB simulation function to execute

e At a time that the MATLAB function passes to the HDL simulator with
the tnext input parameter

¢ Based on a time specification that can include discrete time values, repeat
intervals, and a stop time

* When a specified signal experiences a rising edge — changes from '0' to
1 1 1

® When a specified signal experiences a falling edge — changes from '1' to
1 O 1

¢ Based on a sensitivity list — when a specified signal changes state

Decide on a combination of options that best meet your test bench or
component application requirements. For details on using the tnext
parameter, see “Controlling Callback Timing from a MATLAB Test Bench
or Component Function” on page 3-11. For information on setting other
scheduling parameters, see “Initializing the HDL Simulator for a MATLAB
Link Session” on page 3-12.

Controlling Callback Timing from a MATLAB Test Bench or Component Function

Controlling Callback Timing from a MATLAB Test Bench or
Component Function

You can control the callback timing of a MATLAB test bench or component
function by using that function’s tnext parameter. This parameter passes a
time value to the HDL simulator, which gets added to the MATLAB function’s
simulation schedule. If the function returns a null value ([]) , no new entries
are added to the schedule.

You can set the value of tnext to a value of type double or int64. The
following table explains how the interface converts each type of data for use

in the HDL simulator environment.

Time Representations for tnext Parameter

If You Specify a... The Interface...

double value Converts the value to seconds. For
example, the following value converts
to the simulation time nearest to 1
nanosecond as a multiple of the current
HDL simulator time resolution.

tnext = 1e-9

int64 value Converts to an integer multiple of the
current HDL simulator time resolution
limit. For example, the following value
converts to 100 units of the current time
resolution.

tnext=int64(100)

Note The tnext parameter represents time from the start of the simulation.
Therefore, tnext should always be greater than tnow.

3-11

3 Starting and Controlling MATLAB Link Sessions

3-12

Initializing the HDL Simulator for a MATLAB Link Session

After you decide on scheduling options, you are ready to initialize the HDL
simulator for a specific MATLAB link session. You initialize the HDL
simulator for a cosimulation session with the matlabtb, matlabtbeval, or
matlabcp command, which do the following:

¢ Identify the instance of a module in the HDL model being simulated and
identified with a test bench or component

¢ Define the communication link between the HDL simulator and MATLAB

® Specify a callback to a MATLAB function that executes in the context of
MATLAB on behalf of the instance under simulation in the HDL simulator

In addition, matlabtb commands can include parameters that control when
the MATLAB function executes.

You must specify an instance of an HDL model. By default, the command
establishes a shared memory communication link and attaches the specified
instance to a MATLAB function that has the same name as the instance. For
example, if the instance is hdlsimrand, the command links the instance with
the MATLAB function hdlsimrand in file hdlsimrand.m. Alternatively, you
can specify a different function name with the option -mfunc.

To apply TCP/IP socket communication, specify the command with the
-socket option and a TCP/IP specification. For more information on choosing
TCP/TP socket ports, see “Choosing TCP/IP Socket Ports” on page 1-17.

Note The communication mode and, if appropriate, the TCP/IP specification
that you specify with the matlabtb or matlabtbeval command must match
what you specify for the communication mode when you call the hd1daemon
function in MATLAB.

For more information on modes of communication, see “Modes of
Communication” on page 1-8. For information on choosing socket ports,
see “Choosing TCP/IP Socket Ports” on page 1-17. For more information
on starting the MATLAB end of the communication link, see “Starting the
MATLAB Server” on page 3-7.

Initializing the HDL Simulator for a MATLAB Link Session

The matlabtbeval command executes the MATLAB function immediately,
while matlabtb provides several options for scheduling MATLAB function
execution. The following table lists the various scheduling options.

Note For time-based parameters, you can specify any standard time units
(ns, us, and so on). If you do not specify units, the command treats the time
value as a value of HDL simulation ticks.

For more about ticks and HDL time resolution, see “Representation of
Simulation Time” on page 4-8.

Simulation Scheduling Options

To Specify Include... Where...

MATLAB Function

Execution...

At explicit times timel, ...] time represents one of n time values, past
time 0, at which the MATLAB function
executes.

For example:

matlabtb entity 10 ns, 10 ms,
10 s -mfunc function

The MATLAB function executes when
time equals 0 and then 10 nanoseconds,
10 milliseconds, and 10 seconds from time
Zero.

3-13

3 Starting and Controlling MATLAB Link Sessions

3-14

Simulation Scheduling Options (Continued)

To Specify Include... Where...
MATLAB Function
Execution...
At a combination timel, ...] -repeat n time represents a time value at which
of explicit times the MATLAB function executes and the
and repeatedly n specified with -repeat represents
at an interval an interval between MATLAB function
executions.
For example:
matlabtb entity 5 ns -repeat
10 ns -mfunc function
The MATLAB function executes at time
S h .) equals 0 ns, 5 ns, 15 ns, 25 ns, and so
top the executmng time[, ..] n -repeat on. This repetition continues indefinitely,
after x amount of time | x -cancel

unless cancel with x time value is used.

For example:

matlabtb entity 5 ns -repeat 10
ns -cancel 1 us -mfunc function

This cancellation stops the execution
after 100 microseconds.

When a specific signal
experiences a rising or
falling edge

-rising signall, ...]

-falling signall, ...]

signal represents the pathname of a
signal defined as a logic type.

On change of signal
values (sensitivity list)

-sensitivity signall, ...]

signal represents the pathname of a
signal defined as any type. If the value
of one or more signals in the specified
list changes, the interface invokes the
MATLAB function.

Initializing the HDL Simulator for a MATLAB Link Session

Simulation Scheduling Options (Continued)

To Specify
MATLAB Function
Execution...

Include... Where...

Note Use of this option for INOUT ports
can result in double calls.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full pathname format. If you do not
specify a full pathname, the command applies the HDL simulator rules to
resolve signal specifications.

The following matlabtb command:

ncsim> matlabtb hdlsimrand -rising hdlsimrand.clk,
-socket 4449

links an instance of the module hdlsimrand to function hdlsimrand.m,
which executes within the context of MATLAB based on specified timing
parameters. In this case, the MATLAB function is called when the signal
hdlsimrand.clk experiences a rising edge.

Arguments in the command line specify the following:

3-15

3 Starting and Controlling MATLAB Link Sessions

3-16

hdlsimrand That an instance of the module hdlsimrand
be linked with the MATLAB function
hdlsimrand.

-rising hdlsimrand.clk That the MATLAB function hdlsimrand
be called when the signal hdlsimrand.clk
changes from '0' to '1'.

-socket 4449 That TCP/IP socket port 4449 be used
to establish a communication link with
MATLAB.

To verify that the matlabtb or matlabtbeval command established a
connection, change your input focus to MATLAB and call the function
hdldaemon with the 'status' option as follows:

hdldaemon('status')
If a connection exists, the function returns the message

HDLDaemon socket server is running on port 4449 with 1 connection

Applying Stimuli with the HDL Simulator force Command

Applying Stimuli with the HDL Simulator force Command

After you establish a link between the HDL simulator and MATLAB, you
are ready to apply stimuli to the MATLAB link session environment. One
way of applying stimuli is through the iport return parameter of the linked
MATLAB function. This parameter drives signal values by deposit. Another
option is to issue force commands in the HDL simulator main window.

For example, the following sequence of force commands:

force osc_top.clk_enable 1 -after Ons
force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after Ons O -after 40ns -repeat 80ns

can be entered at the ncsim prompt or in the Tcl pane of the HDL cosim block
(in the presimulation entry box).

These commands drive

® The clk signal to 0 at 0 nanoseconds after the current simulation time and
to 1 at 5 nanoseconds after the current HDL simulator simulation time.
This cycle repeats starting at 10 nanoseconds after the current simulation
time, causing transitions from 1 to 0 and O to 1 every 5 nanoseconds, as
the following diagram shows.

—]

t 0 5 10 20 30

® The clk_en signal to 1 at 0 nanoseconds after the current simulation time.

¢ The reset signal to 0 at 0 nanoseconds after the current simulation time.

3-17

3 Starting and Controlling MATLAB Link Sessions

3-18

Note You should consider using HDL to code clock signals as force is a lower
performance solution in the current version of Cadence’s Incisive simulators.

The following are ways that a periodic force might be introduced:

¢ Via the Clock pane in the HDL Cosim block
¢ Via pre/post Tcl commands in the HDL Cosim block

® Via a user-input Tel script to ncsim

All three approaches may lead to performance degradation.

Running and Monitoring a MATLAB Link Session

Running and Monitoring a MATLAB Link Session

Start a MATLAB link session from the HDL simulator. The HDL simulator
offers a number of options for running a simulation to debug, analyze, or verify
an HDL model. The following sequence is typical for running a simulation
interactively from the main HDL simulator window:

1 Start the simulation by entering the HDL simulator run command or
selecting the Simulation > Run option in the SimVision console of the
Incisive simulator.

The run command offers a variety of options for applying control over how
a simulation runs. For example, you can specify that a simulation run for a
number of time steps. Alternatively, you can specify the -all option, which
causes the simulation to run forever, until the simulation hits a breakpoint,
or a breakpoint event occurs.

The following command instructs the HDL simulator to run the loaded
simulation for 50000 time steps:

run 50000

2 Set breakpoints in the HDL and MATLAB code to verify and analyze
simulation progress and correctness.

The following HDL simulator command sets a breakpoint at line 50 in the
Verilog file hdlsimrand.v:

bp hdlsimrand.v 50

3 Step through the simulation and examine values.

4 When you block execution of the MATLAB function, the HDL simulator
also blocks and remains blocked until you clear all breakpoints in the
function’s M-code.

5 Resume the simulation, as needed.

For more information on the HDL simulator and MATLAB debugging
features, see the appropriate HDL simulator and MATLAB online help or
documentation.

3-19

3 Starting and Controlling MATLAB Link Sessions

3-20

Stopping a MATLAB Link Session

When you are ready to stop a MATLAB link session, it is best to do so in
an orderly way to avoid possible corruption of files and to ensure that all

application tasks shut down appropriately. You should stop a session in the
following sequence:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Halt the simulation by selecting the Simulation > Stop option on the
main window.

3 Exit the HDL simulator, if you are finished with the application.

4 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with
the 'kill' option:

hdldaemon('kill")

For more information on closing Incisive simulator sessions, see the Incisive
simulator documentation.

Modeling and Verifying an
HDL Design with Simulink

Overview (p. 4-3)

Creating a Hardware Model Design
in Simulink (p. 4-5)

Handling Signal Values Across
Simulators (p. 4-7)

Configuring Simulink for HDL
Models (p. 4-18)

Adding the HDL Representation of a
Model Component into a Simulink
Model (p. 4-19)

Configuring an HDL Cosimulation
Block (p. 4-20)

Running and Testing a Cosimulation
Model in Simulink (p. 4-39)

Provides an overview of the process
for integrating Link for Incisive
blocks into a Simulink design.

Lists questions to think about as
you decide to include Simulink in an
EDA solution.

Explains how Link for Incisive
addresses the differences in
treatment of simulation time in the
HDL simulator and Simulink.

Gives suggestions for configuring
Simulink more optimally for use
with Link for Incisive blocks.

Explains how to integrate the HDL
representation of a model component
into a Simulink model with Link for
Incisive blocks.

Explains how to use a Simulink
block parameters dialog to configure
Link for Incisive blocks.

Explains how to start a cosimulation
model in Simulink. This section also
explains how to reset clocks and
restart the HDL simulator during
testing.

4 Modeling and Verifying an HDL Design with Simulink

4-2

Using Frame-Based Processing in
Cosimulation (p. 4-40)

Using a Value Change Dump File for
Design Verification (p. 4-42)

Explains how to improve the
performance of your cosimulation by
using frame-based signals.

Explains how to use the To VCD
File block to generate Value Change
Dump files.

Overview

Overview

HDL simulators, Simulink, and Simulink blocksets provide a powerful
modeling and cosimulation environment for Electronic Design Automation
(EDA). This chapter explains how to set up a cosimulation environment in
Simulink that includes HDL models designed and simulated with Incisive
simulators.

Link for Incisive blocks link hardware components that are concurrently
simulating in the Incisive simulator to the rest of a Simulink model.

Two potential use cases follow:

¢ A single HDL Cosimulation block fits into the framework of a larger
system-oriented Simulink model.

® The Simulink model is a collection of HDL Cosimulation blocks, each

representing a specific hardware component.

The following process shows the typical workflow for integrating HDL
Cosimulation blocks into a Simulink design that includes one or more
hardware components:

1 Design your application model in Simulink. One or more components of the
model can represent hardware that you intend to describe with HDL.

2 Run and test the model design in Simulink.

3 Verify that the model runs as expected. If it does not, repeat steps 1 and 2
to rework and fine tune the design.

4 Use the HDL simulator to simulate a discrete model component of the
design coded in HDL.

5 Integrate the HDL representation of the model component into the
Simulink model as an HDL Cosimulation block.

6 Configure the HDL Cosimulation block. The block parameters dialog
box includes tabs for configuring port, communication, clock, and Tool
Command Language (Tcl) commands.

4 Modeling and Verifying an HDL Design with Simulink

4-4

7 Run and test the revised model design in Simulink.

8 Verify that the revised model runs as expected. If it does not,
a Modify the HDL code and simulate it in the HDL simulator.

b Determine whether you need to re-configure the HDL Cosimulation
block. If you do, repeat steps 6 to 8. If you do not, repeat steps 7 and 8.

9 Determine whether you need to replace another component of the Simulink
model with an HDL Cosimulation block. If you do, go to step 4.

10 Consider using a To VCD File block to verify cosimulation results.

Creating a Hardware Model Design in Simulink

Creating a Hardware Model Design in Simulink

After you decide to include Simulink as part of your EDA flow, think about
its role:

e Will you start by developing an HDL application, using an HDL simulator,
and possibly MATLAB, and then test the results at a system level in
Simulink?

e Will you start with a system-level model in Simulink with “black box
hardware components” and, after the model runs as expected, replace the
black boxes with HDL Cosimulation blocks?

e What other Simulink blocksets might apply to your application? Blocksets
of particular interest for EDA applications include the Communications
Blockset, Signal Processing Blockset, and Simulink Fixed Point.

¢ Will you set up HDL Cosimulation blocks as a subsystem in your model?

¢ What sample times will be used in the model? Will any sample times need
to be scaled?

¢ Will you generate a Value Change Dump (VCD) file?

After you answer these questions, use Simulink to build your simulation
environment.

This figure shows a sample Simulink model that includes an HDL
Cosimulation block.

4-5

4 Modeling and Verifying an HDL Design with Simulink

4-6

HOL tanchester
Receiver Simulation
Information

FhaselFrequency Error Controls

{ Orig Raw
Orig Data -
| Decoded Raw ~=
| Dotk Decoded Data Emor Test Bit Erars
Scope
Crata Align

Original Data

cadencel data Recovered Data |:|

k.

1128 o i+

Frequency Frequency
Error Range Eror Slider

E Signal 1

Phase Event

Recowered Clock

delk
Input Data -
| Phase Offset dualid Data walidity o
Encodad P zamp "

syne_i J={LE Signal
Manchester Encoder) . L Tphass O Scope

izum_i |

i - oL -
qsum_i Lab Quadrature
Shareddem
HDL Manchester Receiver 12 Bapture 12 Map

Before running this model you rmust first launch the HDL simulator.
You can launch the HOL simulator on this computer using either a
shared memaory link or a TCR/AP socket link.

The HDL Cosimulation block (labeled HDL Manchester Receiver) models a
Manchester receiver that is coded in an HDL. Other blocks and subsystems
in the model include the following:

¢ Frequency Error Range block, Frequency Error Slider block, and Phase
Event block

¢ Manchester encoder subsystem

¢ Data alignment subsystem

¢ Inphase/Quadrature (I/Q) capture subsystem

® Error Rate Calculation block from the Communications Blockset

¢ Bit Errors block

e Data Scope block

¢ Discrete-Time Scatter Plot Scope block from the Communications Blockset

For information on getting started with Simulink, see the Simulink online
help or documentation.

Handling Signal Values Across Simulators

Handling Signal Values Across Simulators

The Link for Incisive HDL Cosimulation block serves as a bridge between the
Simulink and HDL simulators. The block represents an HDL component
model within Simulink. Using the block, Simulink writes signals to and reads
signals from the HDL model under simulation in the HDL simulator. Signal
exchange between the two simulators occurs at regularly scheduled time steps
defined by the Simulink sample time.

As you develop a Link for Incisive cosimulation application, you should be
familiar with how signal values are handled across simulators. See the
following topics:

¢ “How Simulink Drives Cosimulation Signals” on page 4-7
e “Representation of Simulation Time” on page 4-8

e “Handling Multirate Signals” on page 4-15

e “Clock Signal Latency ” on page 4-16

¢ “Block Simulation Latency” on page 4-16

How Simulink Drives Cosimulation Signals

Although you can connect the output ports of an HDL Cosimulation block to
any signal in an HDL model hierarchy, you must use some caution when
connecting signals to input ports. Simulink uses the deposit method of
changing signal values to drive input to a cosimulation block. The deposit
method is the weakest method of forcing an HDL signal and can produce
unexpected or undesired results when a signal is driven by multiple sources.
To avoid such conditions, you should attach the input ports to signals that are
not driven, such as the input ports of a top-level HDL model.

If you need to use a signal that has multiple drivers and it is resolved,
Simulink applies the resolution function at each time step defined by the
signal’s Simulink sample rate. Depending on the other drivers, the Simulink
value may or may not get applied. Furthermore, Simulink has no control over
signal changes that occur between its sample times.

4-7

4 Modeling and Verifying an HDL Design with Simulink

Representation of Simulation Time

The representation of simulation time differs significantly between the HDL
simulator and Simulink.

In the HDL simulator, the unit of simulation time is referred to as a tick.
The duration of a tick is defined by the HDL simulator resolution limit. The
default resolution limit is 1 ns.

To determine the current HDL simulator resolution limit, enter echo
$timescale at the HDL simulator prompt. See the HDL simulator
documentation for the application you are using for further information.

Simulink maintains simulation time as a double-precision value scaled to
seconds. This representation accommodates modeling of both continuous
and discrete systems.

The relationship between Simulink and the HDL simulator timing affects
the following aspects of simulation:

¢ Total simulation time
¢ Input port sample times
¢ Qutput port sample times

¢ (Clock periods

During a simulation run, Simulink communicates the current simulation
time to the HDL simulator at each intermediate step. An intermediate step
corresponds to a Simulink sample time hit. Upon each intermediate step, new
values are applied at input ports, or output ports are modified. To bring the
HDL simulator up-to-date with Simulink during cosimulation, Simulink time
must be converted to the HDL simulator time (ticks) and the HDL simulator
must run for the computed number of ticks.

Link for Incisive provides controls that let you configure the timing
relationship between the Incisive simulator and Simulink and avoid timing
errors caused by differences in timing representation.

Handling Signal Values Across Simulators

Defining the Simulink and HDL Simulator Timing Relationship
The Timescales pane of the HDL Cosimulation block parameters dialog
box lets you choose an optimal timing relationship between Simulink and
the HDL simulator. The following figure shows the default settings of the
Timescales pane.

L

Cosimulation of hardware components with Incisive(R). Inputs from Simulink{Fi) are applied to an Incisive signal. Outputs from

Sirmulink and Incisive Cosimulatior
’7 this block are detived from harduare sighals. Specify sighal paths by their full hisrarchical name in Incisive.

Ports ICIocks Timescales IConnection ITc\ I

1 second in Simulink corresponcds to|1

| inthe HDL simulator

ok | Cancel | Help | Apply |

The Timescales pane defines a correspondence between one second of
Simulink time and some quantity of HDL simulator time. This quantity of
HDL simulator time can be expressed in one of the following ways:

® In relative terms (i.e., as some number of HDL simulator ticks). In this
case, the cosimulation is said to operate in relative timing mode. Relative
timing mode is the default.

® In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode.

Note In both timing modes, all sample times and clock periods in Simulink
must be an integer multiple of the resolution units. An error occurs if they
are not.

The following sections discuss these two timing modes.

4-9

4 Modeling and Verifying an HDL Design with Simulink

4-10

Relative Timing Mode

Relative timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of relative time units and a
scale factor, e.g., One second in Simulink corresponds to N ticks in the HDL
simulator, where N is a scale factor.

This correspondence holds regardless of the HDL simulator timing resolution.
To configure relative timing mode for a cosimulation:

1 Click the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select Tick (default value) from the list on the right.
3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the following figure, the Timescales pane is configured for
a relative timing correspondence of 10 HDL simulator ticks to 1 Simulink
second.

Forts I Clocks |TII'HESCBJES ICnnnectinn ITcI I

1 second in Simulink corresponds tl:u|1IZI |T|ck j in the HD'L simulator

4 Click Apply to commit your changes.

Operation of Relative Timing Mode. By default, the HDL Cosimulation
block is configured for relative mode, with a scale factor of 1. Thus, 1 Simulink
second corresponds to 1 tick in the HDL simulator. In the default case:

¢ If the total simulation time in Simulink is specified as N seconds, then the
HDL simulation runs for exactly N ticks (i.e., N ns at the default resolution
limit).

e Similarly, if Simulink computes the sample time of an HDL Cosimulation
block input port as T'si seconds, new values are deposited on the HDL input
port at exact multiples of T'si ticks. If an output port has an explicitly

Handling Signal Values Across Simulators

specified sample time of Tso seconds, values are read from the HDL

simulator at multiples of T'so ticks.

® Clocks operate in a similar fashion. Where a clock has a period of T' seconds:

= If T is even, the clock signal is forced in the HDL simulator as an input
signal that stays low for 7'/2 ticks and stays high for 7'/2 ticks.

= If T'is odd, the clock signal is forced in the HDL simulator as an input

signal that stays low for 7'/2 ticks and stays high for (7'/2) + 1 ticks.

Note Simulink requires such clocks to have a period of at least 2 resolution
units (ticks). Simulink throws an error if specified value of T is less than
2 ticks.

To understand how relative timing mode operates, review cosimulation results
from the following example model.

0

Conztant

-

U1

Scope

cadence

zin zout

| Convert |Hanua1 Switch

HIL _Cozimulationl

g

Pulze

Data Type Conversion

Generator

4-11

4 Modeling and Verifying an HDL Design with Simulink

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1i)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter
has a single input and a single output. The following lists the HDL code

for the inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;
output [7:0] sout;
input clk;

reg [7:0] sout;

always @(posedge clk)
sout <= ! (sin);
endmodule

A cosimulation of this model might have the following settings:

® Simulation parameters in Simulink
= Timescales parameters: 1 Simulink second = 10 HDL simulator ticks
= Total simulation time: 30 s
= Input port (inverter_clock vl.sin) sample time: N/A
= Output port (inverter_clock vl.sout) sample time: 1 s
= Clock (inverter_clock_vl.clk) period: 5 s
e HDL simulator resolution limit: 1 ns

The previous example was excerpted from the Link for Incisive Inverter
tutorial. For more information, see the Link for Incisive demos.

Absolute Timing Mode

Absolute timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of absolute time units and a scale
factor, e.g., One second in Simulink corresponds to (N * Tu) seconds in the
HDL simulator, where Tu is an absolute time unit (e.g., ms, ns, etc.) and N
is a scale factor.

4-12

Handling Signal Values Across Simulators

To configure the Timescales parameters for absolute timing mode, you select
a unit of absolute time, rather than Tick.

To configure absolute timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select a unit of absolute time from the list on the right. Available units
are fs, ps, ns, us, ms, and s.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.
For example, in the figure below, the Timescales pane is configured for an

absolute timing correspondence of 1 HDL simulator second to 1 Simulink
second.

Ports ICIDcks |'I'|mescaJes ICnnnectinn ITcI I

1 second in Simulink corresponds tu:nll Is LI in the HDL sinulataor

4 Click Apply to commit your changes.

In absolute timing mode, all sample times and clock periods in Simulink are
quantized to HDL simulator ticks. The following pseudocode illustrates the
conversion:

qtInTicks = (tInSecs * (tScale / tRL))

where

® qtInTicks is the integer multiple of HDL simulator time in ticks (minimum
2).

e tInSecs is the Simulink time in seconds.

® tScale is the time scale setting (unit and scale factor) chosen in the
Timescales pane of the HDL Cosimulation block.

e tRL is the HDL simulator resolution limit.

4-13

4 Modeling and Verifying an HDL Design with Simulink

4-14

For example, given a Timescales pane setting of 1 s and an HDL simulator
resolution limit of 1 ns, an output port sample time of 12 ns is converted to
ticks as follows:

gqtInTicks = (12ns * (1s / 1ns)) = 12

Operation of Absolute Timing Mode. To understand the operation of
absolute timing mode, review the example model discussed in “Representation
of Simulation Time” on page 4-8. Suppose that the model is re-configured as
follows:

¢ Simulation parameters in Simulink

= Timescale parameters: 1 s of Simulink time corresponds to 1 s of HDL
simulator time.

= Total simulation time: 60e-9 s (60ns)
= Input port (inverter.inport) sample time: 24e-9 s (24 ns)
= Output port (inverter.outport) sample time: 12e-9 s (12 ns)
= Clock (inverter.clk) period: 10e-9 s (10 ns)
e HDL simulator resolution limit: 1 ns
Given these simulation parameters, Simulink cosimulates with the HDL

simulator for 60 ns. Inputs are sampled at a intervals of 24 ns and outputs
are updated at intervals of 12 ns. Clocks are driven at intervals of 10 ns.

Timing Mode Usage Restrictions
The following restrictions apply to the use of absolute and relative timing
modes:

¢ All HDL Cosimulation blocks in the model that communicate with the
same single instance of the HDL simulator must all be configured either in
relative timing mode or in absolute timing mode.

¢ When multiple HDL Cosimulation blocks in a model are communicating
with a single instance of the HDL simulator, all HDL Cosimulation blocks
must have the equivalent Timescales pane settings.

Handling Signal Values Across Simulators

e If you change the Timescales pane settings in a HDL Cosimulation
block between consecutive cosimulation runs, you must restart the HDL
simulator.

Setting HDL Cosimulation Block Port Sample Times

In general, Simulink handles the sample time for the ports of an HDL
Cosimulation block as follows:

¢ If an input port is connected to a signal that has an explicit sample time,
based on forward propagation, Simulink applies that rate to that input port.

¢ Ifan input port is connected to a signal that does not have an explicit sample
time, Simulink assigns a sample time that is equal to the least common
multiple (LCM) of all identified input port sample times for the model.

e After Simulink sets the input port sample periods, it applies user-specified
output sample times to all output ports. Sample times must be explicitly
defined for all output ports.

If you are developing a model for cosimulation in relative timing mode,
consider the following sample time guidelines:

¢ Specify the output sample time for an HDL Cosimulation block as an
integer multiple of the resolution limit defined in the HDL simulator. Use
the HDL simulator command echo $timescale to check the resolution
limit of the loaded model.

¢ Specify the Simulink model’s start and stop time values (see the Solver
pane of the Simulink Configuration Parameters dialog box) as integers.
Start time equals a multiple of all sample/frame rates.

e Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH)
on continuous signals that are driven into an HDL Cosimulation block.

Handling Multirate Signals

Link for Incisive supports the use of multirate signals, signals that are
sampled or updated at different rates, in a single HDL Cosimulation block.
An HDL Cosimulation block exchanges data for each signal at the Simulink
sample rate for that signal. For input signals, a HDL Cosimulation block
accepts and honors all signal rates.

4-15

4 Modeling and Verifying an HDL Design with Simulink

4-16

The HDL Cosimulation block also lets you specify an independent sample
time for each output port. You must explicitly set the sample time for each
output port, or accept the default. This explicit setting lets you control the
rate at which Simulink updates an output port by reading the corresponding
signal from the HDL simulator.

Clock Signal Latency

In an HDL simulator, it is not possible to guarantee the order in which clock
signals (rising-edge or falling-edge) defined in the HDL Cosimulation block
are applied, relative to the data inputs driven by these clocks. Therefore, it is
possible that during a cosimulation, race conditions could develop between a
clock and the data inputs associated with the clock.

To avoid such race conditions, Link for Incisive delays all such clocks by %2
clock period, in effect inverting the sense of the rising or falling edge. The
delay provides a setup and hold time for input data, ensuring that data inputs
are always applied before the driving clock edge is applied. For example, in
the case of a rising-edge clock, inputs are applied first, and %2 clock period
later, the rising edge of the clock is applied.

Where the Simulink sample time is even, the clock delay is exactly % period.
For odd Simulink sample times, the %% period delay is approximated as closely
as possible. While this apparent inversion or delay by % period of the active
edge of the clock can be confusing, it enables cosimulation to work correctly
without race conditions and without requiring separately specified setup

and hold times for the data.

Block Simulation Latency

Simulink and Link for Incisive cosimulation blocks supplement the hardware
simulator environment, rather than operate as part of it. During cosimulation,
Simulink does not participate in HDL simulator delta-time iteration. From
the Simulink perspective, all signal drives (reads) occur during a single
delta-time cycle. For this reason, and due to fundamental differences between
HDL simulators and Simulink with regard to use and treatment of simulation
time, some degree of latency is introduced when you use Link for Incisive
cosimulation blocks. The latency is a time lag that occurs between when
Simulink initiates the deposit of a signal and when the effect of the deposit is
visible on cosimulation block output.

Handling Signal Values Across Simulators

As the following figure shows, Simulink cosimulation block input affects signal
values just after the current HDL simulator time step (t +) and block output
reflects signal values just before the current HDL simulator step time (t - 3).

Simulink

HDL Simulator

* PR

attime step t

Regardless of whether your HDL code is specified with latency, the
cosimulation block has a minimum latency that is equivalent to the
cosimulation block’s output sample time. For large sample times, the delay
can appear to be quite long, but this apparent length is because of the
cosimulation block, which exchanges data with the HDL simulator at the
block’s output sample time only. This condition may be reasonable for a
cosimulation block that models a device that operates on a clock edge only,
such as a register-based device. For cosimulation blocks that contain pure
combinatorial paths, however, you may need to adjust the sample time to
achieve simulation performance required for circuit analysis.

For cosimulation blocks that model combinatorial circuits, you may want to
experiment with a faster sample frequency for output ports. Although this
type of parameter tuning can increase simulation performance, it can also
make a model more difficult to debug. For example, you may need to adjust
the output sample time for each cosimulation block.

4-17

4 Modeling and Verifying an HDL Design with Simulink

Configuring Simulink for HDL Models

When you create a Simulink model that includes one or more Link for Incisive
blocks, you might want to adjust certain Simulink parameter settings to best
meet the needs of HDL modeling. For example, you might want to adjust the
value of the Stop time parameter in the Solver pane of the Configuration
Parameters dialog box.

You can adjust the parameters individually via the GUI. These are some of
the default settings you might expect to use in cosimulation:

Parameter Default Setting
‘SingleTaskRateTransMsg' ‘error'

‘Solver' 'fixedstepdiscrete'
'SolverMode' 'singletasking’
‘StartTime' '0.0'

‘StopTime' "inf'

'FixedStep' 'auto’

‘SaveTime' "off!

‘SaveOutput' "off!
'AlgebraiclLoopMsg"’ ‘error'

The default settings for 'SaveTime' and 'SaveOutput' improve simulation
performance.

4-18

Adding the HDL Representation of a Model Component into a Simulink Model

Adding the HDL Representation of a Model Component
into a Simulink Model

After you code one of your model’s components in Verilog and simulate it in
the Incisive simulator environment, integrate the HDL representation into
your Simulink model as an HDL Cosimulation block:

1 Open your Simulink model, if it is not already open.
2 Delete the model component that the HDL Cosimulation block is to replace.

3 In the Simulink Library Browser, click the Link for Incisive library. The
browser displays the following block icons.

HDL Block that has at least one input
Cosimulation port and one output port.

lcadencel,

A sigl

e

5igd P

HDL Cosimulation

To VCD File Generates a Value Change Dump
(VCD) file. For information on
using this block, see “Using a
Value Change Dump File for
Design Verification” on page 4-42.

3 simulink.wcd

To VwCD File

4 Copy the HDL Cosimulation block icon from the Library Browser to your
model. Simulink creates a link to the block at the point where you drop

the block icon.

5 Connect any HDL Cosimulation block ports to appropriate blocks in your
Simulink model. To model a sink device, configure the block with inputs
only. To model a source device, configure the block with outputs only.

Note In a mixed-language HDL model (one that contains both VHDL and
Verilog components), a cosimulation block can access signals only with the
language of the top-level module instance or component. Currently, that
language must be Verilog.

4-19

4 Modeling and Verifying an HDL Design with Simulink

4-20

Configuring an HDL Cosimulation Block

You configure an HDL Cosimulation block by specifying values for parameters
in a block parameters dialog. The dialog box consists of four tabbed panes that
specify the following:

¢ Ports — Block input and output ports that correspond to signals, including
internal signals, of your HDL design, and an output sample time

¢ Connection — Type of communication and communication settings to be
used for exchanging data between simulators

* Timescales — Timing relationship between Simulink and Link for
Incisive

® Clocks — Rising-edge and falling-edge clocks to apply to your model

¢ Tel — Tel commands to run before and after a simulation

The following sections help you identify what you need to configure, how to
open the Block Parameters dialog box, and how to configure each pane.

What Are Your HDL Cosimulation Block
Requirements?

Before you start to configure an HDL Cosimulation block, review the following
checklist. The checklist helps you identify the parameters you need to set.

If your answer to a question is something other than “no,” go to the topic
listed in the second column of the table for information on how to adjust the
parameter setting to meet your block requirements.

HDL Cosimulation Block Requirements Checklist

Requirement For More Information, See...
Ports
00 Does the HDL model you are mapping to Simulink “Mapping HDL Signals to Block
receive signals on input ports? If so, what are the input Ports” on page 4-23
ports?

Configuring an HDL Cosimulation Block

HDL Cosimulation Block Requirements Checklist (Continued)

Requirement

For More Information, See...

O

Does the HDL model you are mapping to Simulink
transmit signals to output ports? If so, what are the
output ports?

If the block is modeling an input and output device, do
you want to specify explicit sample times for output
ports?

If the block is modeling an input and output device,
do you want to specify explicit fixed point data types
for output ports? By default the data types are either
inherited from the signals connected to the HDL
Cosimulation block output ports or derived from the
HDL model.

If the block is block is modeling a source device, do you
want to specify an output sample time other than two
clock ticks? If you do not specify an input port, the block
uses a default sample time of two clock ticks.

“Mapping HDL Signals to Block
Ports” on page 4-23

“Mapping HDL Signals to Block
Ports” on page 4-23

“Specifying Data Types for Output
Ports” on page 4-28

“Mapping HDL Signals to Block
Ports” on page 4-23

Timing

O

What is the optimal timing relationship between
Simulink and the Incisive simulator for your
cosimulation?

Do you need to specify a relative (Simulink seconds
corresponding to Incisive simulator ticks) timing
relationship between Simulink and the Incisive
simulator?

Do you need to specify an absolute (Simulink seconds
corresponding to Incisive simulator absolute time units)
timing relationship between Simulink and the Incisive
simulator?

“Representation of Simulation
Time” on page 4-8

“Configuring the Simulink
and Incisive Simulator Timing
Relationship” on page 4-29

“Configuring the Simulink
and Incisive Simulator Timing
Relationship” on page 4-29

Communication

O

Is it critical that communication performance be as
optimal as possible?

“Configuring the Communication
Link” on page 4-31

4-21

4 Modeling and Verifying an HDL Design with Simulink

HDL Cosimulation Block Requirements Checklist (Continued)

Requirement

For More Information, See...

[J Are you running the Incisive simulator and Simulink
on the same computer?

O If the Incisive simulator and Simulink are running on
the same computer, do you want to use shared memory
communication?

L0 Do you want to choose a TCP/IP socket port? If so, what
port number or service will you use to establish a link?

O If you are running the Incisive simulator and Simulink
different computers, what is the host name of the
computer running the Incisive simulator?

“Configuring the Communication
Link” on page 4-31

“Configuring the Communication
Link” on page 4-31

“Configuring the Communication
Link” on page 4-31

“Configuring the Communication
Link” on page 4-31

Clocks

00 Do you want to create a rising-edge clock to apply
stimuli to your cosimulation model?

O Do you want to create a falling-edge clock to apply

00 Do you want to specify the period for rising/falling edge
clocks specified in the model?

“Creating Optional Clocks” on page
4-33

“Creating Optional Clocks” on page

“Creating Optional Clocks” on page
4-33

Tel

O Are there any Tcl commands that you want the Incisive
simulator to execute before running a simulation, but
after loading the project in the Incisive simulator?

O Are there any Tcl commands that you want the Incisive
simulator to execute after running a simulation?

“Executing Tcl Commands Before
and After Cosimulation” on page
4-36

“Executing Tcl Commands Before
and After Cosimulation” on page
4-36

Opening the Block Parameters Dialog Box
To open the block parameters dialog for the HDL Cosimulation block,

double-click the block icon.

4-22

Configuring an HDL Cosimulation Block

lcadencel,

A sigl

e

5igd P

HDL Cosimulation

Simulink displays the following Block Parameters dialog box.

E! Function Block Parameters: HDL Cosimulation (=10}

rSimulink and Incisive Cosimuation

Cosimuktion of hamdware components with Incisive (R). Inputs fram Simulink(R) are applied to an Incisive signal. Outputs fom
this block are derived fom hardware signaks. Specify signalpaths by their full hiemmrchical name in Incisive.

IGbcks |T|rnescsies Connection ITcI I

Full HDL Hame I/0 Mode Bample Time Data Type Fracticn Length Auto Fill
ftop/sigl Input HiA n/A HiA
[top/sig2 Cutput 10 Inherit H/A Mew

feepisigl cutpur 10 Inheric /A
Delete

Dawn

Full HDL Name= I/0 Mode Sample Time Data Type Fracticn Length

Jeopi=igl IInput =] | | | | Update |

oK | Cancel | Help | |

Mapping HDL Signals to Block Ports

The first step to configuring your Link for Incisive block is to map signals
and signal instances of your HDL design to port definitions in your HDL
Cosimulation block. In addition to identifying input and output ports, you can
specify a sample time for each output port. You can also specify a fixed-point
data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.
To map the signals, you can use either of the following methods:
* Enter signal information manually into the Ports pane of the HDL

Cosimulation Block Parameters dialog (see “Entering Signal Information
Manually” on page 4-24). This approach can be more efficient when

4-23

4 Modeling and Verifying an HDL Design with Simulink

4-24

you want to connect a small number of signals from your HDL model
to Simulink.

Use the Auto Fill button to obtain signal information automatically by
transmitting a query to the Incisive simulator. This approach can save
significant effort when you want to cosimulate an HDL model that has a
large number of signals that you want to connect to your Simulink model.
In many cases, however, you will need to edit the signal data returned
by the query. See “Obtaining Signal Information Automatically from the
Incisive Simulator” on page 4-27 for details.

Entering Signal Information Manually
To enter signal information directly in the Ports pane:

In the Incisive simulator, determine the test signal pathnames for the HDL
signals you plan to define in your block. The Incisive simulator signal
pathname feature allows you to visualize and specify the hierarchy of
signals in a HDL design. One way of displaying the pathnames is to view
the test signals in the pathname pane of the wave window with the full
pathname option enabled.

2 In Simulink, open the block parameters dialog box for your HDL

Cosimulation block, if it is not already open.

3 Select the Ports tab of the Block Parameters dialog box. Simulink displays

the dialog box as shown in the following figure.

Configuring an HDL Cosimulation Block

"] Function Block Parameters: HDL Cosimulation BEE
rSimulink and Incisive Cosimuation
Cosimuktion of hamdware components with Incisive (R). Inputs fram Simulink(R) are applied to an Incisive signal. Outputs fom
this block are derived fom hardware signaks. Specify signalpaths by their full hiemmrchical name in Incisive.
Pars: I Gocks | Timescaks | connection | Tei |
Full HDL Hame I/0 Mode Bample Time Data Type Fracticn Length Auto Fill
ftop/sigl Input HiA n/A HiA
[top/sig2 Cutput 10 Inherit H/A Mew
feepisigl cutpuc 10 Inheric NiA
Delete
Dawn
Full HDL Hame Ifo Mode Sample Time Data Type Fraction Length
Jeopi=igl IInput =] | | | | Update |
oK | Cance! | Help | |

In this pane, you define the HDL signals of your design that you want to
include in your Simulink block and set a sample time and data type for
output ports. The parameters that you should specify on the Ports pane
depend on the type of device the block is modeling as follows:

* For a device having both inputs and outputs — Specify block input
ports, block output ports, output sample times and output data types.
For output ports, accept the default or enter an explicit sample time.
Data types can be specified explicitly, or set to Inherit (the default). In
the default case, the output port data type is inherited either from the
signal connected to the port, or derived from the HDL model.

¢ For a sink device — Specify block output ports

* For a source device — Specify block input ports

Enter test signal pathnames in the Full HDL name text field, using the
Incisive simulator pathname syntax. Select either Input or Output from
the I/O Mode menu. If desired, set the Data Type and Fraction Length
parameters for signals explicitly, as discussed in step 6.

Note After entering signal parameters, click Update to enter your

changes into the signal list.

4-25

4 Modeling and Verifying an HDL Design with Simulink

Note When you define an input port, make sure that only one source is set
up to drive input to that port. For example, you should avoid defining an
input port that has multiple instances. If multiple sources drive a signal,
your Simulink model may produce unpredictable results.

5 You must specify a sample time for the output ports. Output sample times
are specified as integers. Simulink uses the value that you specify and the
current settings of the Timescales pane to calculate an actual simulation
sample time.

For more information on sample times in the Link for Incisive environment,
see “Representation of Simulation Time” on page 4-8.

6 You can configure the fixed-point data type of each output port explicitly
if desired, or use a default (Inherited). In the default case, Simulink
determines the data type for an output port as follows:

If Simulink can determine the data type of the signal connected to the
output port, it applies that data type to the output port. For example,
the data type of a connected Signal Specification block is known by
back-propagation. Otherwise, Simulink queries the Incisive simulator to
determine the data type of the signal from the HDL model.

To assign an explicit fixed-point data type to a signal:
a Select either Signed or Unsigned from the Data Type menu.

b If the signal has a fractional part, enter the Fraction Length.

For example, an 8-bit signal with Signed data type and a Fraction
Length of 5 is assigned the data type sfix8 En5. An Unsigned 16-bit
signal with no fractional part (a Fraction Length of 0) is assigned the
data type ufix16.

7 Before closing the dialog box, be sure to click Apply to register your edits.

4-26

Configuring an HDL Cosimulation Block

Obtaining Signal Information Automatically from the Incisive
Simulator

The Auto Fill button lets you initiate an Incisive simulator query and supply
a path to a component or module in an HDL model under simulation in the
Incisive simulator. Usually, some modification of the port information is
required after the query completes.

The required steps are outlined in the following example procedure.

1 Open the block parameters dialog box for the HDL Cosimulation block.
Click the Ports tab. The Ports pane opens.

2 Click the Auto Fill button. The Auto Fill dialog box opens.

This modal dialog box requests a path to a component or module in your
HDL model; here you enter an explicit HDL path into the edit field.

3 Click OK to dismiss the dialog and transmit the query.

4 Port data is returned and entered into the Ports pane almost
instantaneously.

5 Click Apply to commit the port additions.

6 Observe that Auto Fill has returned information about all inputs and
outputs for the targeted component. In many cases, this information
includes signals that function in the Incisive simulator but cannot be
connected in the Simulink model. You should delete any such entries from
the list in the Ports pane.

7 Auto Fill returns default values for output ports:
e Sample time: 1
* Data type: Inherit
¢ Fraction length: N/A

You may need to change these values as required by your model. See also
“Specifying Data Types for Output Ports” on page 4-28.

8 Before closing the HDL Cosimulation block parameters dialog box, click
Apply to commit any edits you have made.

4-27

4 Modeling and Verifying an HDL Design with Simulink

4-28

Note Auto Fill does not return information for internal signals. If your
Simulink model needs to access such signals, you must enter them into the
Ports pane manually.

Specifying Data Types for Output Ports

The Data Type and Fraction Length parameters apply only to output
signals.

The Data Type property is enabled only for output signals. You can direct
Simulink to determine the data type, or you can assign an explicit data type
(with option fraction length). By explicitly assigning a data type, you can force
fixed point data types on output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of the fractional part
of the signal in fixed-point representation. The Fraction Length property is
enabled when the signal Data Type property is not set to Inherit.

Output port data types are determined by the signal width and by the Data
Type and Fraction Length properties of the signal. To assign a port data
type, set the Data Type and Fraction Length properties as follows:

e Select Inherit from the Data Type list if you want Simulink to determine
the data type.

Inherit is the default setting. When Inherit is selected, the Fraction
Length edit field is disabled.

Simulink attempts to compute the data type of the signal connected to the
output port by backward propagation. For example, if a Signal Specification
block is connected to an output, Simulink will force the data type specified
by Signal Specification block on the output port.

If Simulink cannot determine the data type of the signal connected to the
output port, it will query the Incisive simulator for the data type of the port.

Note The Data Type and Fraction Length properties apply only to
Verilog signals of wire or reg type.

Configuring an HDL Cosimulation Block

e Select Signed from the Data Type list if you want to explicitly assign
a signed fixed-point data type. When Signed is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
sfixN_EnF, where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Signed and a Fraction Length
of 5 for a 16-bit signal, Simulink forces the data type to sfix16_En5. For
the same signal with a Data Type set to Signed and Fraction Length of
-5, Simulink forces the data type to sfix16_E5.

e Select Unsigned from the Data Type list if you want to explicitly assign an
unsigned fixed point data type. When Unsigned is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
ufixN_EnF, where N is the signal width and F is the Fraction Length
value.

For example, if you specify Data Type as Unsigned and a Fraction
Length of 5 for a 16-bit signal, Simulink forces the data type to
ufix16_En5. For the same signal with a Data Type set to Unsigned and
Fraction Length of -5, Simulink forces the data type to ufix16_E5.

Configuring the Simulink and Incisive Simulator
Timing Relationship

You configure the timing relationship between Simulink and the Incisive
simulator by using the Timescales pane of the block parameters dialog box.
Before setting the Timescales parameters, you should read “Representation
of Simulation Time” on page 4-8 to understand the supported timing modes
and the issues that will determine your choice of timing mode.

You can specify either a relative or an absolute timing relationship between
Simulink and the Incisive simulator, as described in the following sections .

Specifying a Relative Timing Relationship
To configure relative timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog box.

2 Select Tick (default value) from the list on the right.

4-29

4 Modeling and Verifying an HDL Design with Simulink

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

For example, in the following figure, the Timescales pane is configured
for a relative timing correspondence of 10 Incisive simulator ticks to 1
Simulink second.

E! Function Block Parameters: HDL Cosimulation = E

Cosimulation of hardware componentz with Incisive (R). Inputs fom Simulink(R) ar applied to an Incigive signal. Outputs fom

Simulink and Incisive Cosimulation
|7 thiz block are derived from hardware signalks. Specify signal paths by their full hiemmchizal name in Incisive.

Pars ICIDGI(E: |Tirnesc‘.sles IConnect'Dn ITG| I

1 s2cond in Simulink comesponds to I]D I Tick LI in the HOL simulator

oK Cance|

4 Click Apply to commit your changes.

Specifying an Absolute Timing Relationship

To configure absolute timing mode for a cosimulation:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog box.

2 Select a unit of absolute time from the list on the right. Available units
are fs, ps, ns, us, ms, and s.

3 Enter a scale factor in the edit box on the left. The default scale factor is 1.

4-30

Configuring an HDL Cosimulation Block

For example, in the following figure, the Timescales pane is configured
for an absolute timing correspondence of 1 Incisive simulator second to 1

Simulink second.

E! Function Block Parameters: HDL Cosimulation = E

Cosimulation of hardware components with Incisive (R). Inputs from Simulink(R) are applied o an Incisive signal. Qutputs fram

Simulink and Incisive Cosimulation
|7 thiz block are derived from hardware signalke. Specify signal paths by their full hiemrchical name in Incighe.

Connection ITG| I

Parts ICbcks | Timescalkes

1 sacand in Simulink comesponds to |1 I = j in the HOL simulator

oK Cancs|

4 Click Apply to commit your changes.

Configuring the Communication Link
Configure a block’s communication link with the Connection pane of the
block parameters dialog.

The following steps guide you through the communication configuration.

1 Determine whether Simulink and the Incisive simulator are running on
the same computer. If they are, skip to step 4.

2 Clear the HDL simulator running on this computer check box. (This
check box is selected by default.) Because Simulink and the Incisive

4-31

4 Modeling and Verifying an HDL Design with Simulink

4-32

simulator are running on different computer, Connection method is
automatically set to Socket.

3 Enter the hostname of the computer that is running your HDL simulation
in the Incisive simulator in the Host name text field. In the Port number
or service text field, specify a valid port number or service for your
computer system. For information on choosing TCP/IP socket ports, see
“Choosing TCP/TP Socket Ports” on page 1-17. Skip to step 5.

4 If the Incisive simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for
the communication channel. For information on the different modes of
communication, see “Modes of Communication” on page 1-8.

If you choose TCP/IP socket communication, specify a valid port number
or service for your computer system in the Port number or service text
field. For information on choosing TCP/IP socket ports, see “Choosing
TCP/TP Socket Ports” on page 1-17.

If you choose shared memory communication, select the Shared memory
check box.

5 Click Apply.

The following example dialog dialog shows communication definitions for
an HDL Cosimulation block. The block is configured for Simulink and the
Incisive simulator running on the same computer, communicating in TCP/IP
socket mode over TCP/IP port 4449.

Configuring an HDL Cosimulation Block

1~ Function Block Parameters: HDL Cosimulation HBEE
—Simulink and Incisive Cosimulation
Cosimulation of hardware compone nts with Incisive (R). Inputs from Simulink(R) are applizd to an Incisive signal. Qutputs fom
this black are derived from hamdware signaks. Specify signal paths by their full hismrchical nams in Incisive
Pars | Clocks | Timessaks | Connection | Tal |
[¥ the HOL simulator is running on this computer
Cannection rnethod:l Sockst =l
Host name: |
Port numberorsarvice: |4qqg
I~ Show connection info an ikan
ok | Cancs| Help

Creating Optional Clocks

You can create rising-edge or falling-edge clocks that apply internal stimuli to
your cosimulation model. When you specify a clock in your block definition,
Simulink creates a rising-edge or falling-edge clock that drives the specified
HDL signals by depositing them.

Simulink attempts to create a clock that has a 50% duty cycle and a predefined
phase that is inverted for the falling edge case. If necessary, Simulink
degrades the duty cycle to accommodate odd Simulink sample times, with a
worst case duty cycle of 66% for a sample time of T=3.

The following figure shows a timing diagram that includes rising and falling
edge clocks with a Simulink sample time of T=10 and an Incisive simulator
resolution limit of 1 ns. The figure also shows that given those timing
parameters, the clock duty cycle is 50%.

4-33

4 Modeling and Verifying an HDL Design with Simulink

4-34

Rising Edge Clock

i < 50% Duty Cycle —p|
)

I «—— Simulink Sample Period, T=10 ——

HDL Simulator Resolution Limit

1
1
1
;] ns! | | | | |
i
I
1

Folliné Edge Clock

To create clocks:

1 In the Incisive simulator, determine the clock signal pathnames you plan to
define in your block. To do this, you can use the same method explained
for determining the signal pathnames for ports in step 1 of “Mapping HDL

Signals to Block Ports” on page 4-23.

2 Select the Clocks tab of the Block Parameters dialog box. Simulink
displays the dialog box as shown in the following figure.

E! Function Block Parameters: HDL Cosimulation

— Simulink and Incisive Cosimulation

Cosimulatian of hamwame compane nts with Incisive (R). Inputs fram Simulink{R)ae applied to an Incisive signal. Outputs fom
thiz block ae derved from hadware signaks. Specify signalpaths by their full hiemmrchical name in Incisive.

ITim@s’xbs Connaction ITcI |

Full HOL Name Edge Pericd

Full HOL Name Edge Peri

Configuring an HDL Cosimulation Block

3 Click the New button to add a new clock signal.

4 Enter the clock signal pathname in the Full HDL Name text field, using
Incisive simulator pathname syntax.

5 To specify whether the clock generates a rising-edge or falling edge signal,
select Rising or Falling from the Edge list.

6 The Period field specifies the clock period. Accept the default (2), or

override it by entering the desired clock period explicitly in the Period field.

Specify the Period field as an even integer, with a minimum value of 2.

7 After entering the desired property values, click Update. This enters the
signal values into the signal list in the center of the Clocks pane.

8 When you have finished editing clock signals, click Apply to register your
changes with Simulink.

The following dialog box defines the rising-edge clock clk for the HDL
Cosimulation block, with a default period of 2.

E! Function Block Parameters: HDL Cosimulation (=10 *]

rSimulink and Incisive Cosimuation

Cosimultion of hamdware campanents with Incisive (R}, Inputs from Simulink(R) are applied to an Incisive signal. Outputs from
this block am derived flom hamdware signalks. Specify signal paths by their full his mchical nams in Incisie

Pars | Chcks | Timsssakes | Connection | Tel |

Full HDL Name Edge Feriod

alk Rising 2

. |
Full HDL Wame Edge Fericd
Iclk Rising LI Iz Update |
oK | Cance! | Help |

4-35

4 Modeling and Verifying an HDL Design with Simulink

4-36

Executing Tl Commands Before and After
Cosimulation

You have the option of specifying Tcl commands to execute before and after the
Incisive simulator simulates the HDL component of your Simulink model. You
can use Tcl for something as simple as a one-line echo command to confirm
that a simulation is running or as complete as a complex script that performs
an extensive simulation initialization and startup sequence. For example, the
Post- simulation command field on the Tcl Pane is particularly useful for
instructing the Incisive simulator to restart at the end of a simulation run.

You can specify the pre- and post-simulation Tcl commands using one of the
following methods:

® By entering Tcl commands in the Pre-simulation commands or
Post-simulation commands text fields of the HDL Cosimulation block

® By using the Simulink model construction command set_param

Notes

® You can include the quit -f command in a post-simulation Tcl command
string to force the Incisive simulator to shut down at the end of a
cosimulation session. To ensure that all other after simulation Tcl
commands specified for the model have an opportunity to execute, specify
all after simulation Tcl commands in a single cosimulation block and place
quit at the end of the command string.

e With the exception of quit used in a post-simulation Tcl command, the
Tel script that you specify for either pre- simulation or post-simulation
cannot include commands that load an Incisive simulator project or modify
simulator state. For example, they cannot include commands such as run,
stop, or reset.

Specifying Pre- and Post-Simulation Tl Commands with HDL
Cosimulation Block Parameters Dialog Box
To specify Tcl commands,

Configuring an HDL Cosimulation Block

1 Select the Tecl tab of the Block Parameters dialog box. The dialog box
appears as shown in the following figure.

ﬂ Function Block Parameters: HDL Cosimulation =S

r—Simulink and Incisive Cosimuatian

Cosimulation of hamware components with Incisive (R). Inputs fom Simulink (R} are applied to an Incisive signal Outputs fom
this block are derived fom hardware sianak. Specify signalpaths by their full hiermmrchical name in Incisive

Ports IGbcks |T\rnescsies Caonnection |Tc\ |

Fre-simulation commands:

puts "Running Simulink Cosimuation black "

Postsimulation commands:

puts "dans”

The Pre-simulation commands text box includes a puts command for
reference purposes.

2 Enter one or more commands in the Pre-simulation command and
Post-simulation command text boxes. You can specify one Tcl command
per line in the text box or enter multiple commands per line by appending
each command with a semicolon (;), which is the standard Tcl concatenation
operator.

3 Click Apply.
Specifying Pre- and Post-Simulation Tcl Commands with

Simulink Command set_param

Use this command to specify pre-simulation and post-simulation Tcl
commands. Set the Tcl commands with set_param at the MATLAB command
prompt.

This example shows setting several pre-simulation Tcl commands:

set_param('cosim_blk', 'TclPreSimCommand',...

4-37

4 Modeling and Verifying an HDL Design with Simulink

['force sim:/filter2d_v/clk_enable 1;',...
'force sim:/filter2d_v/reset 1 0 ns, 0 {1 ns};',...
‘echo "Running Simulink Cosimulation block.";',...
'echo [clock format [clock seconds]]'l])

This example shows setting a post-simulation Tcl command:

set_param('cosim_blk', 'TclPostSimCommand', 'quit -force');

The Tecl pane of the HDL Cosimulation block is automatically updated with
the new Tcl commands.

For more about set_param, refer to the Simulink documentation.

Applying Your Block Parameters Configuration
Settings

After you enter your block parameters settings,

1 Review the content of each HDL Cosimulation block pane.

2 When you are satisfied with the content, click Apply to apply any new
settings.

3 Click OK to dismiss the dialog box.

To verify the connection with the Incisive simulator and the signal names,
select Edit > Update diagram, or press Ctrl+D.

4-38

Running and Testing a Cosimulation Model in Simulink

Running and Testing a Cosimulation Model in Simulink

To run and test a cosimulation model in Simulink, click Simulation > Start
in your Simulink model window. Simulink runs the model and displays any
errors that it detects.

You can use Edit > Update diagram to check that the cosimulation interface

is correct before running. This menu option connects to the HDL simulator
and ensures that data types are correct.

4-39

4 Modeling and Verifying an HDL Design with Simulink

4-40

Using Frame-Based Processing in Cosimulation

Overview

The HDL Cosimulation block supports processing of single-channel
frame-based signals.

A frame of data is a collection of sequential samples from a single channel or
multiple channels. One frame of a single-channel signal is represented by a
M-by-1 column vector. A signal is frame-based if it is propagated through a
model one frame at a time.

Frame-based processing requires the Signal Processing Blockset. Source
blocks from the Signal Processing Sources library let you specify a frame-based
signal by setting the Samples per frame block parameter. Most other signal
processing blocks preserve the frame status of an input signal. You can use
the Buffer block to buffer a sequence of samples into frames.

Frame-based processing can improve the computational time of your Simulink
models, because with frame-based processing Simulink interacts with the
HDL simulator only once per frame, rather than once per sample. Use of
frame-based signals also lets you simulate the behavior of frame-based
systems more accurately.

See “Working with Signals” in the Signal Processing Blockset documentation
for detailed information about frame-based processing.

Using Frame-Based Processing

You do not need to configure the HDL Cosimulation block in any special
way for frame-based processing. To use frame-based processing in a
cosimulation, connect one or more single-channel frame-based signals to
the input port or ports of the HDL Cosimulation block. All such signals
must meet the requirements described in “Requirements and Restrictions
for Using Frame-Based Signals” on page 4-41. The HDL Cosimulation
block automatically configures its output for frame-based operation at the
appropriate frame size.

Use of frame-based signals affects only the Simulink side of the cosimulation.
The behavior of the HDL code under simulation in the HDL simulator does

Using Frame-Based Processing in Cosimulation

not change in any way. Simulink assumes that the HDL simulator processing
is sample-based. Samples acquired from the HDL simulator are assembled
into frames as required by Simulink. Conversely, input data framed by
Simulink is transmitted to the HDL simulator in frames, which are unpacked
and processed by the HDL simulator one sample at a time.

Requirements and Restrictions for Using Frame-Based Signals

Observe the following restrictions and requirements when connecting
frame-based signals in to an HDL Cosimulation block:

¢ Connection of mixed frame-based and sample-based signals to the same
HDL Cosimulation block is not supported.

¢ Only single-channel frame-based signals can be connected to the HDL
Cosimulation block. Use of multichannel (matrix) frame-based signals is
not supported in this release.

e All frame-based signals connected to the HDL Cosimulation block must

have the same frame size.

Frame-based processing in the Simulink model is transparent to the operation
of the HDL model under simulation in the HDL simulator. The HDL model is
presumed to be sample based.

4-41

4 Modeling and Verifying an HDL Design with Simulink

4-42

Using a Value Change Dump File for Design Verification

A value change dump (VCD) file logs changes to variable values, such as
the values of signals, in a file during a simulation session. VCD files can be

useful during design verification. Some examples of how you might apply
VCD files include

¢ For comparing results of multiple simulation runs, using the same or
different simulator environments

® As input to post-simulation analysis tools

VCD files include data that can be graphically displayed or analyzed with
postprocessing tools. For example, VCD files can be displayed in HDL wave
form viewers. Other examples of postprocessing include the extraction of data
pertaining to a particular section of a design hierarchy or data generated
during a specific time interval.

The To VCD File block provided in the Link for Incisive block library serves as
a VCD file generator during an HDL simulator and Simulink cosimulation
session. The block generates a VCD file that contains information about
changes to signals connected to the block’s input ports and names the file with
a specified file name.

Note The To VCD File block logs the logic states '1' and '0' only. The block
does not log the logic states 'X' and 'Z"'.

The following sections discuss:

® “Generating a VCD File” on page 4-42
e “VCD File Format” on page 4-45

Generating a VCD File
To generate a VCD file,

1 Open your Simulink model, if it is not already open.

Using a Value Change Dump File for Design Verification

2 Identify the location where you want to add the To VCD File block. For
example, you might temporarily replace a scope with this block.

3 In the Simulink Library Browser, click the Link for Incisive library. The
browser displays four types of blocks, one of which is the To VCD File block.

3 simulink.wcd

To WD File

4 Copy the To VCD File block from the Library Browser to your model by
clicking the block and dragging it from the browser to your model window.

5 Connect the block ports to appropriate blocks in your Simulink model.

6 Configure the To VCD File block by specifying values for parameters in
the Block Parameters dialog box.

a Double-click the block icon. Simulink displays the following dialog box.

4-43

4 Modeling and Verifying an HDL Design with Simulink

E Sink Block Parameters: To VCD File =[O X

—To WCD File

Generates a value change durnp (VT D) file containing information about changes to signals
connected to the block's input parts. The WCD file name field specifies the name of the generated
file.

— Parameters

WED file name:
Isimulink.vcd

Murnber of input ports:
Ji

Tirnescale

1 second in Simulink corresponds tu:nll I Tick :I in the HDL simulator
1 HDL tick i defined as = frs =]

b Specify a file name for the generated VCD file in the VCD file name
text box:

¢ If you specify a file name only, Simulink places the file in your current
MATLAB directory.

¢ Specify a complete pathname to place the generated file in a different
location.

¢ Ifyou want the generated file to have a .vcd file type extension, you
must specify it explicitly.

Caution Do not give the same file name to different VCD blocks. Doing
so results in invalid VCD files.

¢ Specify an integer in the Number of input ports text box that indicates
the number of block input ports on which signal data is to be collected.
The block can handle up to 943 (830,584) bits, each of which maps to
a unique symbol in the VCD file.

4-44

Using a Value Change Dump File for Design Verification

In some cases, a single input port maps to multiple signals (and symbols).
This mapping is necessary when the input port receives a vector of real
numbers or a fixed-point real number. For example, a signal of type
sfix16_En15 requires 16 symbols.

d Click OK.

7 Choose an optimal timing relationship between Simulink and the HDL
simulator. The time scale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator time. Choose
relative time or absolute time. For more on the To VCD File time scale,
see To VCD File.

8 Run the simulation. Simulink captures the simulation data in the VCD
file as the simulation runs.

For a description of the VCD file format, see “VCD File Format” on page 4-45.

VCD File Format

The format of generated VCD files adheres to IEEE Std 1364-2001. The
following table describes selected contents from a generated VCD file.

Examples of Generated VCD File Format

File Content Description
_ All timestamps for VCD variable value
$timescale 1 ns $ end changes are related to this single timescale.

The scope module name is a prefix for the
$scope module manchestermodel $end signal name in the waveform viewer. The
module matches the Simulink md]l file name.
The VCD file name is the database prefix for
the signal in the waveform viewer.

4-45

4 Modeling and Verifying an HDL Design with Simulink

Examples of Generated VCD File Format (Continued)

File Content

Description

$comment SL scale=1.000000 Tick;
HDL tick=1 ns; SL2HDL
Scaling Factor=1.000000 $end

This comment provides feedback about the
cosimulation time-scaling specified in the
ToVCD block dialog box parameters. In this
example, the Simulink timescale is “1 s in
Simulink corresponds to 1 tick in the HDL
simulator” and the specified HDL timescale
is “1 HDL Tick is defined as 1 ns”. These
settings mean that the signal sampling
times in Simulink are multiplied by 1.0 to
determine the VCD timestamps for the signal
value-changes.

$var wire 1 ! Original Data [0] $end
$var wire 1 " Recovered Clock [0] $end
$var wire 1 # Recovered Data [0] $end
$var wire 1 $ Data Validity [0] $end

Variable definitions. Each definition
associates a signal with character
identification code (symbol). The symbols
are derived from printable characters in the
ASCII character set from ! to ~. Variable
definitions also include the variable type
(wire) and size in bits.

VCD files can grow very large for larger designs or smaller designs with
longer simulation runs. The size of a VCD file generated by the To VCD
File block is limited only by the maximum number of signals (and symbols)
supported, which is 942 (830,584).

4-46

MATLAB Functions —
Alphabetical List

dec2mvl

Purpose

Syntax

Description

Examples

See Also

Convert decimal integer to binary string

dec2mvl(d)
dec2mvl(d,n)

dec2mvl1(d) returns the binary representation of d as a multivalued
logic string. d must be an integer smaller than 2/52.

dec2mvl1(d,n) produces a binary representation with at least n bits.

The following function call returns the string '10111":
dec2mv1(23)

The following function call returns the string ’01001":
dec2mv1(-23)

The following function call returns the string ’11101001”:

dec2mvl(-23,8)

mvl2dec

hdldaemon

Purpose

Syntax

Description

Start MATLAB server component of the Link for Incisive interface

hdldaemon

hdldaemon('PropertyName', 'PropertyValue'...)
hdldaemon('status')

hdldaemon('kill"')

Server Activation

hdldaemon starts the MATLAB server component of Link for Incisive
with the shared memory communication enabled and the time
resolution for the MATLAB simulation function output ports set to
scaled (type double).

Although you can use TCP/IP on a single system (one that is running
both MATLAB and the Incisive simulator), using shared memory
communication when your application configuration consists of a single
system can result in increased performance.

Only one hldaemon can be running at any given time.

Matching Communication Modes and Socket Ports

The communication mode that you specify (shared memory or TCP/IP
sockets) must match what you specify for the communication mode
when you issue the matlabtb , matlabtbeval, or matlabcp command
in the Incisive simulator.

In addition, if you specify TCP/IP socket mode, you must also identify

a socket port to be used for establishing links. You can choose and
specify a socket port yourself, or you can use an option that instructs the
operating system to identify an available socket port for you. Regardless
of how the socket port is identified, the socket you specify with the
Incisive simulator must match the socket being used by the server.

For more information on modes of communication, see “Modes of
Communication” on page 1-8. For more information on establishing the
Incisive simulator end of the communication link, see “Initializing the
HDL Simulator for a MATLAB Link Session” on page 3-12.

hdldaemon

hdldaemon('PropertyName', 'PropertyValue'...) starts the
MATLAB server component of Link for Incisive with property-value
pair settings that specify the communication mode for the link between
MATLAB and the Incisive simulator and, optionally, a Tcl command
to be executed immediately in the HDL simulator. See “Property
Name/Property Value Pairs” on page 5-5 for details.

Link Status

hdldaemon('status') returns the following message indicating that a
link (connection) exists between MATLAB and the Incisive simulator:

HDLDaemon socket server is running on port 4449 with 0 connections

You can also use this function to check on the mode of communication
being used, the number of existing connections, and the interprocess
communication identifier (ipc_id) being used for a link by assigning the
return value of hdldaemon to a variable. The ipc_id identifies a port
number for TCP/IP socket links or the file system name for a shared
memory communication channel. For example:

x=hdldaemon('status')
X:
comm: 'sockets'
connections: 0
ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no active
Incisive simulator clients. If a shared memory link is in use, the value
of comm is 'shared memory' and the value of ipc_id is a file system
name for the shared memory communication channel.

Server Shutdown

hdldaemon('kill') shuts down the MATLAB server without shutting
down MATLAB.

hdldaemon

PrOPerty The following property name/property value pairs are valid for
Name/Propertydldaemon:

Value

Pairs ‘socket', tcp_spec

Specifies the TCP/IP socket mode of communication for the
link between MATLAB and the Incisive simulator. If you omit
this argument, the server uses the shared memory mode of
communication.

Note You must use TCP/IP socket communication when your
application configuration consists of multiple computing systems.

The tcp_spec can be a TCP/IP port number, TCP/IP port alias or
service name, or the value zero, indicating that the port is to be
assigned by the operating system. Some valid tcp_spec examples

follow:
Option Examples
Port number '4449"' or 4449
Alias or service '"MATLAB Service'
name
Operating system '0' or 0
assigned

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

hdldaemon

Note If you specify the operating system option ('0' or 0),

use hdldaemon('status') to acquire the assigned socket port
number. You must specify this port number when you issue a link
request with the matlabtb, matlabtbeval, or matlabcp command
in the Incisive simulator.

"tclemd', 'command'’
Passes a Tcl command string, to be executed immediately in the
Incisive simulator, from MATLAB to the Incisive simulator. You
may use a compound command and separate the commands with
semicolons.

Note The Tcl command string you specify cannot include
commands that load an Incisive simulator project or modify
simulator state. For example, the string cannot include commands
such as run, stop, or reset.

Examples If Your Application Is Do the Following...
to...
Operate in shared Omit the 'socket', tcp_spec property
memory mode name/property value pair. The interface

operates in shared memory mode by
default. You should use shared memory
mode if your application configuration
consists of a single system and uses a
single communication channel.

hdldaemon

If Your Application Is
to...

Operate in TCP/IP
socket mode, using a
specific TCP/IP socket
port

Operate in TCP/IP
socket mode, using a
TCP/IP socket that
the operating system
identifies as available

Execute Tcl command
immediately upon
simulator connection

Do the Following...

Specify the 'socket', tcp_spec property
name and value pair. The tcp_spec can
be a socket port number or service name.
Examples of valid port specifications
include '4449', 4449, and MATLAB
Service. For information on choosing a
TCP/IP socket port, see “Choosing TCP/IP
Socket Ports” on page 1-17.

Specify 'socket', Oor 'socket', '0'.

Specify the 'tclcmd', 'command' property
name and value pair. Command must be
a valid Tcl command but cannot include
commands that load an Incisive simulator
project or modify the simulator state.

The following function call starts the MATLAB server with shared
memory communication enabled:

hdldaemon

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on socket port 4449. Although it is not
necessary to use TCP/IP socket communication on a single-computer
application, you can use that mode of communication locally:

hdldaemon('socket', 4449)

hdldaemon

The following function call causes the string This is a test to be
displayed at the Incisive simulator prompt:

hdldaemon('tclcmd', 'puts {This is a test}')

The following is an example of a compound Tcl command used with
hdldaemon:

hdldaemon('tclcmd', '{force filter2d_v.clk_enable 1
-after Ons;
force filter2d_v.reset 1 -after O ns 0 -after 1 ns;
puts {Running Simulink Cosimulation block};
puts [clock format [clock seconds]]}')

mvl2dec

Purpose

Syntax

Description

Examples

See Also

Convert multivalued logic to decimal

mvl2dec('multivalued logic _string')
mvl2dec('multivalued_logic_string', signed)

mvl2dec('multivalued logic_string') converts a multivalued
logic string multivalued_logic_string to a positive decimal. If
multivalued_logic_string contains any character other than '0' or '1"',
NaN is returned. multivalued_logic_string must be a vector.

mvl2dec('multivalued_logic_string', signed) converts a
multivalued logic string multivalued_logic_string to a positive or

a negative decimal. If signed is true, this function assumes the

first character multivalued_logic_string(1) to be a signed bit of a 2’s
complement number. If signed is missing or false, the multivalued logic
string is converted to a positive decimal.

The following function call returns the decimal value 23:

mvl2dec('010111")

The following function call returns NaN:

mvl2dec (' xxxxxx"')

The following function call returns the decimal value -9:

mvl2dec('10111',true)

dec2mvl

nclaunch

5-10

Purpose
Syntax

Description

Property

Start and configure Incisive simulators for use with Link for Incisive
nclaunch('PropertyName', 'PropertyValue'...)

nclaunch('PropertyName', 'PropertyValue'...) starts the Incisive
simulator for use with the MATLAB and Simulink features of Link for
Incisive. The initial directory in the Incisive simulator matches your
MATLAB current directory if no explicit rundir parameter is specified.

After you call this function, you can use HDL Simulator Tcl Commands
to do interactive debug setup.

The property name/property value pair settings allow you to customize
the Tcl commands used to start the Incisive simulator, the ncsim
executable to be used, the path and name of the Tcl script that stores
the start commands, and for Simulink applications, details about the
mode of communication to be used by the applications. You must use a
property name/property value pair with nclaunch.

"hdlsimdir', 'pathname'’

Name/ Property Specifies the pathname to the Incisive simulator executable to

Value
Pairs

be started. By default, the function uses the first version of
the simulator that it finds on the system path (defined by the
path variable) . Use this option to start different versions of the
Incisive simulator or if the version of the simulator you want to
run does not reside on the system path.

‘hdlsimexe', 'simexename'’
Specifies the name of an Incisive simulator executable. By default,
this function uses 'ncsim'. You can specify a custom-built
simulator executable with 'simexename. '

‘libdir', 'directory'
Specifies the directory containing MATLAB shared libraries. This
property creates an entry in the startup Tcl file that points to
the directory with the shared libraries needed for the Incisive
simulator to communicate with MATLAB when the Incisive
simulator is running on a machine that does not have MATLAB.

nclaunch

"rundir', 'tempdir’
Specifies where to run the HDL simulator. By default, the
function uses the current working directory. If 'tempdir' is
specified, the function creates a temporary directory in which it
runs the HDL simulator.

‘startupfile', 'pathname’
Specifies a Tcl script that defines the behavior of the Incisive
simulator commands hdlsimmatlab and hdlsimulink. The
Tel script consists of some general-purpose Tcl commands for
launching the Incisive simulator and any commands you specify
with the 'tclstart' property. If you omit this property, the
function creates a temporary file each time the Incisive simulator
starts. If you specify a name for the Tcl script, later you can use
the file to start the Incisive simulator from a system shell as
shown in the following syntax:

tclsh tcl_scriptname

‘socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between
the Incisive simulator and Simulink. For TCP/IP socket
communication on a single computing system, the tcp_spec can
consist of just a TCP/IP port number or service name. If you are
setting up communication between computing systems, you must
also specify the name or Internet address of the remote host. The
following table lists different ways of specifying tcp_spec.

Format Example
<port-num> 4449
<port-alias> matlabservice
<port-num>@<host> 4449@compa

5-11

nclaunch

5-12

Format Example
<host>:<port-num> compa: 4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

If the Incisive simulator and Simulink are running on the same
computing system, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit socketsimulink
tcp_spec from the function call.

'starthdlsim', ['yes' | 'no']

Determines whether the Incisive simulator is launched. The
default is yes, which launches the Incisive simulator and creates a
startup Tcl file. If starthdlsim is set to no, the Incisive simulator
is not launched, but a startup Tecl file is still created.

This startup Tecl file contains pointers to MATLAB and Simulink
shared libraries. To run the Incisive simulator manually, see
“Setting Up Link for Incisive for Use with the Incisive Simulator
on a Separate Machine from MATLAB” on page 1-22.

‘tclstart', 'tcl_commands'

Specifies one or more Tcl commands to execute before the Incisive
simulator launches. Specify a command string or a cell array

of command strings. You must specify at least one command,;
otherwise, no action occurs.

nclaunch

Note You must put “exec” in front of non-Tcl system shell
commands. For example:

exec -ncverilog -c +access+rw +linedebug top.v
hdlsimulink -gui work.top

Examples The following function call sequence compiles the design and starts
Simulink with a GUI from the “proj” directory with the model loaded.
Simulink is instructed to communicate with Link for Incisive on socket
port 4449. All of these commands are specified in a single string as
the property value to tclstart.

nclaunch(...

"tclstart',...

{'exec ncverilog -c +access+rw +linedebug top.v',...
"hdlsimulink -gui work.top'},...

'socketsimulink', '4449"',...

"rundir', '/proj');

In this next example, tclcmd is used to build the sequence of Tecl

commands that are executed in a Tcl shell after calling nclaunch from
MATLAB.

e tclcmd{1} compiles vliogtestbench_top.
e tclcmd{2} elaborates the model.

e tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated
vlogtestbench_top in the simulator.

The arguments being passed with input (matlabtb and run) are
executed in the ncsim Tcl shell. In this example, matlabcp associates the
m-function vlogmatlabc to the module instance u_matlab_component.
It assumes that the hdldaemon in MATLAB is listening on port 32864.
run will run 50 resolution units (ticks).

5-13

nclaunch

tclemd{1} ‘exec ncvlog vlogtestbench_top.v'
tclcmd{2} = 'exec ncelab -access +wc vlogtestbench_top'
tclemd{3} ["hdlsimmatlab -gui vlogtestbench_top '
"-input "{@matlabcp vlogtestbench_top.u_matlab_component...
-mfunc vlogmatlabc -socket 32864}" '...
"-input "{@run 50}"']
nclaunch('hdlsimdir', 'local.IUS.glnx.tools.bin', 'tclstart',tclcmd);

The following example demonstrates using the property startupfile
to designate a Tcl script that is then used to start the HDL simulator
from the Tcl shell.

In MATLAB:

nclaunch (" tclstart', “xxx', ‘startupfile', “mytclscript',...
“starthdlsim', "no')

In Tel shell:

shell> tclsh mytclscript

5-14

HDL Simulator Tcl
Commands — Alphabetical
List

hdlsimmatlab

Purpose Load instantiated HDL design for verification with MATLAB
Syntax hdlsimmatlab <instance> [<ncsim_args>]
Arguments <instance>

Specifies the instance of an HDL design to load for verification.

<ncsim_args>
Specifies one or more ncsim command arguments. For details, see
the description of ncsim in the Incisive simulator documentation.

Description The hdlsimmatlab command loads the specified instance of an HDL
design for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB. The Incisive simulator
opens a simulation workspace as it loads the HDL design.

This command may be run from the HDL simulator prompt or from
a Tel script shell (tclsh).

Examples The following command loads the module instance parse from library
work for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

hdlsimulink

Purpose

Syntax

Argument

Load instantiated HDL design for cosimulation with Simulink

hdlsimulink [<ncsim_args>] <instance>
[-socket <tcp_spec>]

<ncsim_args>
Specifies one or more ncsim command arguments. At a minimum,
either -gui or -tcl is required. If you specify -gui, the Simulink
GUI will be launched when the HDL design is loaded. If you
specify -tcl, a Tcl script shell is launched instead. If you do not
specify either of these arguments, the HDL simulator runs the
simulation without Simulink. Other valid ncsim arguments may
be specified in addition to -gui or -tcl. For more information
on -gui, -tcl, or other ncsim arguments, see the description of
ncsim in the Incisive simulator documentation.

<instance>
Specifies the instance of an HDL design to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. This setting overrides the
setting specified with the MATLAB nclaunch function. The
<tcp_spec> can consist of a TCP/IP socket port number or service
name (alias). For example, you might specify port number 4449 or
the service name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

If the Incisive simulator and MATLAB are running on the

same computer, you have the option of using shared memory

for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

hdlsimulink

Note The communication mode that you specify with the
hdlsimulink command must match what you specify for the
communication mode when you configure Link for Incisive blocks
in your Simulink model.

For more information on modes of communication, see “Modes
of Communication” on page 1-8. For more information on
establishing the Simulink end of the communication link, see
“Configuring the Communication Link” on page 4-31.

Description The hdlsimulink command loads the specified instance of an HDL
design for cosimulation and sets up the Incisive simulator so it can
establish a communication link with Simulink. The Incisive simulator
opens a simulation workspace into which it loads the HDL design.

Examples The following command loads the module instance parse from library
work for cosimulation, sets up the Incisive simulator so it can establish
a communication link with Simulink, and opens a Tecl script shell:

tclshell> hdlsimulink -gui work.parse

matlabcp

Purpose

Syntax

Arguments

Associate MATLAB component function with instantiated HDL design

matlabcp <instance>
[<time-specs>]

[-socket <tcp-spec>]

[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...1]]

[-mfunc <name>]

<instance>

Specifies an instance of an HDL design that is associated with

a MATLAB function. By default, matlabcp associates the
instance to a MATLAB function that has the same name as the
instance. For example, if the instance is myfirfilter, matlabcp
associates the instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with

-mfunc.

Do not specify an instance of an HDL design that has already been
associated with a MATLAB test bench function (via matlabtb).

<time-specs>

Specifies a combination of time specifications consisting of any or

all of the following:

<timen>,...

-repeat <time>

Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative

to the current simulation time. The
MATLAB function is always called once
at the start of the simulation, even if you
do not specify a time.

Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the

matlabcp

time the MATLAB function is initially
called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of
tnow at the time the MATLAB function
is initially called. If you do not specify
a cancel time, the command calls the
MATLAB function.

Note Time specifications must be placed after the matlabcp
instance and before any additional command arguments;
otherwise the time specifications are ignored.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host that is
running the MATLAB server (hdldaemon). The following table
lists different ways of specifying <tcp_spec>.

Format Example
<port-num> 4449
<port-alias> matlabservice
<port-num>@<host> 4449@compa
<host>:<port-num> compa: 4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

matlabcp

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

If the Incisive simulator and MATLAB are running on the

same computer, you have the option of using shared memory

for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabcp command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see “Modes
of Communication” on page 1-8. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified
signals. Specify -rising with the pathnames of one or more
signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
"1' to '0'. Specify -falling with the pathnames of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any

of the specified signals changes state. Specify -sensitivity with

the pathnames of one or more signals. Signals in the sensitivity

matlabcp

list can be any type and can be at any level in the hierarchy of
the HDL model.

-mfunc <name>
The name of the MATLAB function that is attached to the module
you specify for instance . If you omit this argument, matlabcp
attaches the module to a MATLAB function that has the same
name as the module. For example, if the module is myfirfilter,
matlabcp associates the module with the MATLAB function
myfirfilter. If you omit this argument and matlabcp does not
find a MATLAB function with the same name, the command
generates an error message.

Description The matlabcp command has the following characteristics:

e Starts the Incisive simulator client component of Link for Incisive.

® Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

Note Link for Incisive currently supports only Verilog, although
mixed-mode simulations should be possible as long as all cosimulation
signals are in Verilog modules.

® Creates a process that schedules invocations of the specified
MATLAB function.

¢ Cancels any pending events scheduled by a previous matlabcp
command that specified the same instance. For example, if you issue
the command matlabcp for instance foo, all previously scheduled
events initiated by matlabcp on foo are canceled.

6-8

matlabcp

Examples

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabcp command.

MATLAB component functions simulate the behavior of the HDL model.
A stub entity or module (providing port definitions only) in the HDL
design passes its input signals to the MATLAB component function.
The MATLAB component processes this data and returns the results
to the outputs of the stub entity or module. A MATLAB component
typically provides some functionality (such as a filter) that is not yet
implemented in the HDL code. See “Coding a MATLAB Component
Function” on page 2-14.

The following command starts the Incisive simulator client component
of Link for Incisive. The '-mfunc' option specifies the m-function to
connect to and '-socket' option specifies the port num for socket
connection mode.

ncsim>matlabcp vlogtestbench_top.u_matlab_component
-mfunc vlogmatlabc -socket 4449

matlabtb

6-10

Purpose

Syntax

Arguments

Initiate MATLAB test bench session for instantiated HDL design

matlabtb <instance>

[<time-specs>]

[-socket <tcp-spec>]

[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...1]]
[-mfunc <name>]

<instance>
Specifies the instance of an HDL design that attaches to a
MATLAB test bench function. By default, matlabtb attaches the
instance to a MATLAB function that has the same name as the
instance. For example, if the instance is myfirfilter, matlabtb
associates the instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
-mfunc.

Note Do not specify an instance of an HDL design that has
already been associated with a MATLAB component function (via
matlabcp). If you do, the new association overwrites the existing
one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

matlabtb

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative to
the current simulation time. Even if you
do not specify a time, the command calls
the MATLAB function once at the start of
the simulation.

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is initially
called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of
tnow at the time the MATLAB function
is initially called. If you do not specify
a cancel time, the command calls the
MATLAB function.

Note Time specifications must be placed after the matlabtb
instance and before any additional command arguments;
otherwise the time specifications are ignored.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host that is

6-11

matlabtb

running the MATLAB server (hdldaemon). The following table
lists different ways of specifying <tcp_spec>.

Format Example
<port-num> 4449
<port-alias> matlabservice
<port-num>@<host> 4449@compa
<host>:<port-num> compa: 4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

If the Incisive simulator and MATLAB are running on the

same computer, you have the option of using shared memory

for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabtb command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see “Modes
of Communication” on page 1-8. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified

6-12

matlabtb

signals. Specify -rising with the pathnames of one or more
signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
"1' to '0'. Specify -falling with the pathnames of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify sensitivity with
the pathnames of one or more signals. Signals in the sensitivity
list can be any type and can be at any level of the HDL design.

-mfunc <name>
The name of the MATLAB function that is attached to the module
you specify for instance. If you omit this argument, matlabtb
attaches the module to a MATLAB function that has the same
name as the module. For example, if the module is myfirfilter,
matlabtb associates the module with the MATLAB function
myfirfilter. If you omit this argument and matlabtb does not
find a MATLAB function with the same name, the command
generates an error message.

Description The matlabtb command has the following characteristics:

e Starts the Incisive simulator client component of Link for Incisive.

® Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

Note Link for Incisive currently supports only Verilog, although
mixed-mode simulations should be possible as long as all cosimulation
signals are in Verilog modules.

6-13

matlabtb

6-14

Examples

® (Creates a process that schedules invocations of the specified
MATLAB function.

¢ (Cancels any pending events scheduled by a previous matlabtb
command that specified the same instance. For example, if you issue
the command matlabtb for instance foo, all previously scheduled
events initiated by matlabtb on foo are canceled.

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabtb command.

MATLAB component functions simulate the behavior of components in
the HDL model. A stub entity or module (providing port definitions
only) in the HDL design passes its input signals to the MATLAB
component function. The MATLAB component processes this data
and returns the results to the outputs of the stub entity or module. A
MATLAB component typically provides some functionality (such as

a filter) that is not yet implemented in the HDL code. See “Coding a
MATLAB Component Function” on page 2-14.

The following command starts the Incisive simulator client component
of Link for Incisive, associates an instance of the module myfirfilter
with the MATLAB function myfirfilter, and initiates a local TCP/IP
socket-based test bench session using TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 5 nanoseconds
from the current time, and then repeatedly every 10 nanoseconds:

ncsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

The following command starts the Incisive simulator client component
of Link for Incisive, and initiates a remote TCP/IP socket-based session
using remote MATLAB host compa and TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 10 nanoseconds

matlabtb

from the current time, each time signal work.fclk experiences a rising
edge, and each time signal work.din changes state.

ncsim> matlabtb myfirfilter 10 ns -rising top.fclk
-sensitivity top.din -socket 4449@compa

The following command starts the Incisive simulator client component
of Link for Incisive. The '-mfunc' option specifies the m-function to
connect to and ' -socket' option specifies the port number for socket
connection mode. '-sensitivity' indicates that the test bench session
is sensitized to the signal sine_out.

ncsim>matlabtb osc_top -sensitivity osc_top.sine_out
-socket 4448 -mfunc hosctb

6-15

matiabtbeval

Purpose

Syntax

Arguments

6-16

Call specified MATLAB function for immediate execution on behalf of
instantiated HDL design

matlabtbeval <instance> [-socket <tcp_spec>]
[-mfunc <name>]

<instance>

Specifies the instance of an HDL design that attaches to a
MATLAB function. By default, matlabtbeval attaches the
instance to a MATLAB function that has the same name as

the instance. For example, if the instance is myfirfilter,
matlabtbeval associates the instance with the MATLAB function
myfirfilter. Alternatively, you can specify a different MATLAB
function with the -mfunc property.

-socket <tcp_spec>

Specifies TCP/IP socket communication for the link between

the Incisive simulator and MATLAB. For TCP/IP socket
communication on a single computer, the <tcp_spec> can consist
of just a TCP/IP port number or service name (alias). If you are
setting up communication between computers, you must also
specify the name or Internet address of the remote host. The
following table lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449 on this computer

<port-alias> matlabservice on this
computer

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1-17.

matlabtbeval

If the Incisive simulator and MATLAB are running on the

same computer, you have the option of using shared memory

for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

Note The communication mode that you specify with the
matlabtbeval command must match what you specify for the
communication mode when you call the hdldaemon command to
start the MATLAB server.

For more information on modes of communication, see “Modes
of Communication” on page 1-8. For more information on
establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 3-7.

-mfunc <name>
The name of the MATLAB function that is attached to the
module you specify for instance. If you omit this argument,
matlabtbeval attaches the module to a MATLAB function that
has the same name as the module. For example, if the module
is myfirfilter, matlabtbeval associates the module with the
MATLAB function myfirfilter . If you omit this argument and
matlabtbeval does not find a MATLAB function with the same
name, the command displays an error message.

Description The matlabtbeval command has the following characteristics:

e Starts the Incisive simulator client component of Link for Incisive.

® Associates a specified instance of an HDL design created in the
Incisive simulator with a MATLAB function.

¢ Executes the specified MATLAB function once and immediately on
behalf of the specified module instance.

6-17

matiabtbeval

Note For the Incisive simulator to establish a communication link with
MATLAB, the MATLAB hdldaemon must be running with the same
communication mode and, if appropriate, the same TCP/IP socket port
as you specify with the matlabtbeval command.

Examples The following command starts the Incisive simulator client component
of Link for Incisive, associates an instance of the module myfirfilter
with the function myfirfilter.m, and uses a local TCP/IP socket-based
communication link to TCP/IP port 4449 to execute the function
myfirfilter.m:

ncsim> matlabtbeval myfirfilter -socket 4449

The following command starts the Incisive simulator client component
of Link for Incisive, associates an instance of the module filter with
the function myfirfilter.m, and uses a remote TCP/IP socket-based
communication link to host compa and TCP/IP port 4449 to execute the
function myfirfilter.m

ncsim> matlabtbeval myfirfilter -socket 4449@compa

6-18

nomatlabtb

Purpose

Syntax

Description

Examples

See Also

Terminate active MATLAB test bench and MATLAB component
sessions

nomatlabtb
The nomatlabtb command terminates all active MATLAB test bench
and MATLAB component sessions that were previously initiated by

matlabtb or matlabcp commands.

The following command terminates all MATLAB test bench and
MATLAB component sessions:

ncsim> nomatlabtb

matlabcp, matlabtb

6-19

Simulink Blocks —
Alphabetical List

HDL Cosimulation

Purpose

Library

Description

|[cadencel, .

Asigl
g 503

~

HDL Cosimulation

Cosimulate a hardware component by communicating with an HDL
model executing in Incisive simulator

Link for Incisive

The HDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from an HDL
model under simulation in the Incisive simulator. You can use this
block to model a source or sink device by configuring the block with

input or output ports only.

The tabbed panes on the block’s dialog box let you configure:

Block input and output ports that correspond to signals (including
internal signals) of an HDL model. You must specify a sample time
for each output port; you can also specify a data type for each output
port.

Type of communication and communication settings used to exchange
data between simulators.

The timing relationship between units of simulation time in Simulink
and the Incisive simulator.

Rising-edge or falling-edge clocks to apply to your model. You can
specify the period for each clock signal.

Tcl commands to run before and after the simulation.

The Ports pane provides fields for mapping signals of your HDL design
to input and output ports in your block. The signals can be at any level
of the HDL design hierarchy. Simulink deposits an input port signal
on an Incisive simulator signal at the signal’s sample rate. Conversely,
Simulink reads an output port signal from a specified Incisive simulator
signal at the specified sample rate.

In general, Simulink handles port sample periods as follows:

HDL Cosimulation

¢ If an input port is connected to a signal that has an explicit sample
period, based on forward propagation, Simulink applies that rate
to the port.

¢ If an input port is connected to a signal that does not have an explicit
sample period, Simulink assigns a sample period that is equal to
the least common multiple (LCM) of all identified input port sample
periods for the model.

e After Simulink sets the input port sample periods, it applies
user-specified output sample times to all output ports. An explicit
sample time must be specified for each output port.

In addition to specifying output port sample times, you can force

the fixed point data types on output ports. For example, setting the
Data Type property of an 8-bit output port to Signed and setting its
Fraction Length property to 5 would force the data type to sfix8 En5.

Input/output ports can be used here as well; specify port as both input
and output.

The Timescales pane lets you choose an optimal timing relationship
between Simulink and the Incisive simulator. You can configure either a
relative timing relationship (Simulink seconds correspond to an Incisive
simulator-defined tick interval) or an absolute timing relationship
(Simulink seconds correspond to an absolute unit of Incisive simulator
time).

The Connection pane specifies the communications mode used
between Simulink and the Incisive simulator. If you use TCP socket
communication, this pane provides fields for specifying a socket port and
for the host name of a remote computer running the Incisive simulator.

The Clocks pane lets you create optional rising-edge and falling-edge
clocks that apply stimuli to your cosimulation model. You can either
specify an explicit period for each clock, or accept a default period of 2.
Simulink attempts to create a clock that has a 50% duty cycle and a
predefined phase that is inverted for the falling edge case.

HDL Cosimulation

Whether you have configured the Timescales pane for relative timing
mode or absolute timing mode, the following restrictions apply to clock
periods:

¢ Ifyou specify an explicit clock period, you must enter a sample time
equal to or greater than 2 resolution units (ticks).

e Ifthe clock period (whether explicitly specified or defaulted) is not an
even integer, Simulink cannot create a 50% duty cycle, and therefore
Link for Incisive creates the falling edge at

clockperiod /2

(rounded down to the nearest integer).

The following figure shows a timing diagram that includes rising-edge
and falling-edge clocks with a Simulink sample period of T=10 and an
Incisive simulator resolution limit of 1 ns. The figure also shows that
given those timing parameters, the clock duty cycle is 50%.

Rising Edge Clock

: < 50% Duty Cycle =1
I A
I «—— Simulink Sample Period, T=10 —— !

P S TR I TR N TR T T

1
!
L L L
HDL Simulator Resolution Limit 1

FcIIing Edge Clock

For more information on calculating relative and absolute timing modes,
see “Defining the Simulink and HDL Simulator Timing Relationship”
on page 4-9 in Chapter 4, “Modeling and Verifying an HDL Design with
Simulink”.

HDL Cosimulation

Dialog
Box

The Tel pane provides a way of specifying tools command language
(Tcl) commands to be executed before and after the Incisive simulator
simulates the HDL component of your Simulink model. The
Pre-simulation commands field on this pane is particularly useful
for simulation initialization and startup operations, but it cannot be
used to change simulation state.

The Block Parameters dialog box consists of four tabbed panes of
configuration options:

e “Ports Pane” on page 7-5

e “Connection Pane” on page 7-10

¢ “Timescales Pane” on page 7-12

e “Clocks Pane” on page 7-16

e “Tcl Pane” on page 7-18

Ports Pane

L2 Function Block Parameters: HDL Cosimulation BEE
Sirnulink and Incisive Cosimulation
Cosimulation of hardware components with Incisive(R). Inputs from Simulink{ R are applied to an Incisive signal. Qutputs from
this hlock are derived from hardware signals. Specify signal paths by their full hierarchical name in Incisive.
Clocks | Tmescales | Cornection | Tel |
Full HDL Rame I/0 Mode Sample Time Data Type Fraction Length Auta Fill
filterzd_w. filter_in Input HfR HAR HfR
...erzd_v.filter_out oubput Ge-4 signed 0 Mew
Delete
Down
Full HDL Rame I50 Mode Sample Time Data Tope Fraction Length
filterzd_w filter_in IIr\put Ea | | | | Update |
oK | Cancel | Help | |

7-5

HDL Cosimulation

The list at the center of the pane displays HDL signals corresponding to
ports on the HDL Cosimulation block.

Maintain this list with the buttons on the right of the pane:

Auto Fill — Transmit a port information request to the Incisive
simulator. The port information request returns port names and
information from an HDL model under simulation in the Incisive
simulator, and automatically enters this information into the ports
list. See “Obtaining Signal Information Automatically from the
Incisive Simulator” on page 4-27 for a detailed description of this
feature.

New — Add a new signal to the list and select it for editing.
Delete — Remove a signal from the list.

Up — Move the selected signal up one position in the list.
Down — Move the selected signal down one position in the list.

Update — Update the displayed values in the list for the selected
signal. Note that this affects only the signal list. To commit edits to
the Simulink model, you must also click Apply.

To edit the properties of a signal, select the signal from the list and set
the desired values in the fields at the bottom of the pane. Then, click
Update to enter the new values into the list. The properties of a signal
are as follows.

Full HDL Name

Specifies the signal pathname, using the Incisive simulator
pathname syntax. For example, a pathname for an input port
might be manchester.samp. The signal can be at any level of
the HDL design hierarchy. The HDL Cosimulation block port
corresponding to the signal is labeled with the Full HDL Name.

You can use a VHDL delimiter (:), a Verilog delimiter (.), or a
Simulink delimiter (/) in the signal pathname. You will get an
error if you use an incorrect delimiter.

HDL Cosimulation

The following are valid signal pathnames:
® /manchester/u_iqconv/gsum (Simulink path delimiter)
® manchester.u_iqconv.qgsum (default Verilog path delimiter)

® manchester.u_iqgconv.qsum[4:0] (direct copy from HDL
simulator waveform window)

® manchester:u_iqgconv:qgsum (default VHDL path delimiter,
used on a Verilog signal)

® manchester:u_iqgconv:qsum[4:0] (same, with vector
specification)

Note You can copy signal pathnames directly from the HDL
simulator wave window and paste them into the Full HDL Name
field, using the standard copy and paste commands in the Incisive
simulator and Simulink (as long as you use the ‘Path.Name’ view
and not ‘Db::Path.Name’ view). After pasting a signal pathname
into the Full HDL Name field, you must click the Update button
to complete the paste operation and update the signal list.

I/0 Mode

Select either Input, Output, or both.

Input designates signals of your HDL model that are to be driven
by Simulink. Simulink deposits values on the specified the
Incisive simulator signal at the signal’s sample rate.

Note When you define a block input port, make sure that only
one source is set up to drive input to that signal. For example, you
should avoid defining an input port that has multiple instances. If
multiple sources drive input to a single signal, your simulation
model may produce unexpected results.

HDL Cosimulation

Output designates signals of your HDL model that are to be read
by Simulink. For output signals, you must specify an explicit
sample time. You can also specify a data type, if desired (see Date
Type and Fraction Length in a following section).

Inout designates HDL model signals that are bidirectional; that
is, signals that may be either driven by Simulink or read by
Simulink.

Sample Time

This property is enabled only for output signals. You must specify
an explicit sample time.

Sample Time represents the time interval between consecutive
samples applied to the output port. The default sample time

is 1. The exact interpretation of the output port sample time
depends on the settings of the Timescale pane of the HDL
Cosimulation block (see “Timescales Pane” on page 7-12). See also
“Representation of Simulation Time” on page 4-8.

Data Type
Fraction Length

These two related parameters apply only to output signals.

The Data Type property is enabled only for output signals. You
can direct Simulink to determine the data type, or you can assign
an explicit data type (with option fraction length). By explicitly
assigning a data type, you can force fixed point data types on
output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of
the fractional part of the signal in fixed-point representation.
Fraction Length is enabled when the Data Type property is
not set to Inherit.

Output port data types are determined by the signal width and by
the Data Type and Fraction Length properties of the signal.

HDL Cosimulation

To assign a port data type, set the Data Type and Fraction
Length properties as follows:

¢ Select Inherit from the Data Type list if you want Simulink
to determine the data type.

Inherit is the default setting. When Inherit is selected, the
Fraction Length edit field is disabled.

Simulink attempts to compute the data type of the signal
connected to the output port by backward propagation. For
example, if a Signal Specification block is connected to an
output, Simulink will force the data type specified by Signal
Specification block on the output port.

If Simulink cannot determine the data type of the signal
connected to the output port, it will query the Incisive simulator
for the data type of the port.

¢ Select Signed from the Data Type list if you want to explicitly
assign a signed fixed point data type. When Signed is selected,
the Fraction Length edit field is enabled. The port is assigned
a fixed point type sfixN_EnF, where N is the signal width and F
is the Fraction Length.

For example, if you specify Data Type as Signed and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to sfix16_En5. For the same signal with a Data
Type set to Signed and Fraction Length of -5, Simulink
forces the data type to sfix16_ES5.

e Select Unsigned from the Data Type list if you want to
explicitly assign an unsigned fixed point data type When
Unsigned is selected, the Fraction Length edit field is
enabled. The port is assigned a fixed point type ufixN_EnF,
where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Unsigned and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to ufix16_En5. For the same signal with a Data

HDL Cosimulation

7-10

Type set to Unsigned and Fraction Length of -5 , Simulink
forces the data type to ufix16_ES5.

Connection Pane

This figure shows the default configuration of the Connection pane.
By default, the block is configured for shared memory communication
between Simulink and the Incisive simulator, running on a single
computer.

E! Function Block Parameters: HDL Cosimulation = O]

Simulink and Incisive Cosimulation

Cosimulation of hardware components with IncisiveR). Inputs from Simulink]R) are applied to an Incisive signal. Outputs from
this block are derived from harcware sighals. Specify signal paths by their full hierarchical name it Incisive.

Parts | Clocks |T|mescaJe3 Dnnectlon ITcI |

[¥ the HDL simulatar is rumning an this computer

Connection method:l Shared memaory j

[V Show connection info on icon

ok LCancel | Help |

If you select TCP/IP socket mode communication, the pane displays
additional properties, as shown in the following figure.

HDL Cosimulation

E! Function Block Parameters: HDL Cosimulation =[O]

Simulink and Incisive Cosimulation

Cosimulation of hardware components with IncisiveR). Inputs from Simulinks R are applied to a0 Incisive signal. Outputs from
this block are derived from hardware signals. Specify signal paths by their full hierarchical narme in Incisive.

Paorts |Clock3 |T|mesca]es Connectian ITcI |

[ithe HDL sirmulatar is rumning on this computer |

Caonhection method:l _I

Haost name: |hostname

Port nurber or service: |4449

¥ Show connection info on icon

akK | Cancel | Help Apply

the HDL Simulator is running on this computer
Select this option if you want to run Simulink and the Incisive
simulator on the same computer. When both applications run on
the same computer, you have the choice of using shared memory
or TCP sockets for the communication channel between the two
applications. If this option is deselected, only TCP/IP socket mode
is available, and the Connection method list is disabled.

Connection method
This list is enabled when the HDL Simulator is running on
this computer is selected. Select Socket if you want Simulink
and the Incisive simulator to communicate via a designated
TCP/IP socket. Select Shared memory if you want Simulink and
the Incisive simulator to communicate via shared memory. For
more information on these connection methods, see “Configuring
the Communication Link” on page 4-31.

7-11

HDL Cosimulation

7-12

Host name
If Simulink and the Incisive simulator are running on different
computers, this text field is enabled. The field specifies the host
name of the computer that is running your HDL simulation in the
Incisive simulator.

Port number or service
Indicate a valid TCP socket port number or service for your
computer system (if not using shared memory). For information
on choosing TCP socket ports, see “Choosing TCP/IP Socket Ports”
on page 1-17.

Show connection info on icon
When this option is selected, Simulink indicates information
about the selected communication method and (if applicable)
communication options information on the HDL Cosimulation
block icon. If shared memory is selected, the icon displays the
string SharedMem. If TCP socket communication is selected,
the icon displays the host name and port number in the format
hostname:port.

In a model that has multiple HDL Cosimulation blocks, with each
communicating to different instances of the Incisive simulator in
different modes, this information helps to distinguish between
different cosimulations.

Timescales Pane

The Timescales pane of the HDL Cosimulation block parameters
dialog lets you choose an optimal timing relationship between Simulink
and the Incisive simulator. The following figure shows the default
settings of the Timescales pane.

HDL Cosimulation

E! Function Block Parameters: HDL Cosimulation = O]

Simulink and Incisive Cosimulation

Cosimulation of hardware components with hcisive(R). Ihputs frorm Simulinkd R are applied to an Incisive signal. Qutputs from
this block are derived from hardware signals. Specify signal paths by their full hierarchical narme in Incisive.

Ports |Clocks |T|mesca]es IConnection |Tc| I

LI in the HOL simulator

1 second in Simulink corresponds t0|1

aK | Cancel | Help | Apply

The Timescales pane specifies a correspondence between one second
of Simulink time and some quantity of Incisive simulator time. This
quantity of Incisive simulator time can be expressed in one of the
following ways:

® In relative terms (i.e., as some number of Incisive simulator ticks). In
this case, the cosimulation is said to operate in relative timing mode.
Relative timing mode is the default.

To use relative mode, select Tick from the list on the right, and enter
the desired number of ticks in the edit box. For example, in the
figure below the Timescales pane is configured for a relative timing
correspondence of 10 Incisive simulator ticks to 1 Simulink second.

7-13

HDL Cosimulation

7-14

Forts | Clocks |Tll‘nescales ICu:unnectiu:un |T|:I |

1 second in Simulink corresponds tl:u|1IZI |T|ck j in the HD'L simulator

In absolute units (such as milliseconds or nanoseconds). In this case,
the cosimulation is said to operate in absolute timing mode.

To use absolute mode, select a unit of absolute time (available units
are fs, ps, ns, us, ms, s) from the list on the right. Then enter

a scale factor in the left-side edit box. For example, in the figure
below the Timescales pane is configured for an absolute timing
correspondence of 1 Incisive simulator second to 1 Simulink second.

Ports |I:Iocks |T|mesca]es ICnnnectinn |Tc| |

1 second in Simulink corresponds tnII Is ;I in the HO'L simulatar

To set the absolute time, you must know the value of the HDL
simulator tick (resolution unit) to understand how Link for Incisive
handles the timing of the falling edge when the duty cycle does not
fall at 50%. The following restrictions apply to clock periods:

= You must enter a sample time equal to or greater than 2 resolution
units (ticks) (no falling edge can occur in < 2 ticks).

= If the clock period (whether explicitly specified or defaulted) is not
an even integer multiple, Simulink cannot create a 50% duty cycle,
and therefore Link for Incisive creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

You must know how many ticks your selected time represents so
that you know how the falling edge will occur. This next example

HDL Cosimulation

demonstrates how to calculate the number of HDL simulator
ticks for an absolute clock period of 1 Simulink second = 3 HDL
simulator seconds.

1 HDL simulator second = 10° HDL simulator ns
1 HDL simulator tick = 10 HDL simulator ns
1 HDL simulator second = (10°/10) or 10°® HDL simulator ticks

1 Simulink seconds = 3 HDL simulator seconds
1 Simulink second = 3x10%® HDL simulator ticks

In this example, the number of ticks is greater than 2 and an
even integer multiple, therefore the duty cycle will fall at 50%. If
1 HDL simulator tick was instead equal to 13 ns, the end result
would have the falling edge occur at 1153846153 ticks, or a just
under 50% duty cycle.

For more information on calculating relative and absolute timing
modes, see “Defining the Simulink and HDL Simulator Timing
Relationship” on page 4-9 in Chapter 4, “Modeling and Verifying
an HDL Design with Simulink”.

For detailed information on the relationship between Simulink and the
Incisive simulator during cosimulation, and on the operation of relative
and absolute timing modes, see “Representation of Simulation Time” on
page 4-8 in Chapter 4, “Modeling and Verifying an HDL Design with
Simulink”.

7-15

HDL Cosimulation

7-16

Clocks Pane

E! Function Block Parameters: HDL Cosimulation

1= ="
Simulink and Incisive Cosimulation
Cosimulation of hardware companents with Incisive(R). Inputs from Simulinkd R are applied to an Incisive signal. Outputs from
this block are derived from hardware sighals. Specify signal paths by their full hierarchical name in Incisive.
Forts | I Timescales Connection | Tel |
Full HDL Hame Edge Period M
Full HOL Rame Edge Period

ak | Caneel | Help |

The scrolling list at the center of the pane displays HDL clocks that
drive values to the HDL signals that you are modeling, using the
deposit method.

Maintain the list of clock signals with the buttons on the right of the
pane:

* New — Add a new clock signal to the list and select it for editing.

¢ Delete — Remove a clock signal from the list.

e Up — Move the selected clock signal up one position in the list.

¢ Down — Move the selected clock signal down one position in the list.

¢ Update — Update the displayed values in the list for the selected
clock signal. Note that this affects only the signal list. To commit
edits to the Simulink model, you must also click Apply.

HDL Cosimulation

To edit the properties of a clock signal, select it from the list and enter
(or select) desired values in the fields at the bottom of the pane. Then
click Update to enter the new values into the list. The properties of a
clock signal are

Full HDL Name
Specify each clock as a signal pathname, using the Incisive
simulator pathname syntax. A sample pathname for a clock might
be manchester.clk.

Note You can copy signal pathnames directly from the HDL
simulator wave window and paste them into the Full HDL Name
field, using the standard copy and paste commands in the Incisive
simulator and Simulink (as long as you use the ‘Path.Name’ view
and not ‘Db::Path.Name’ view). After pasting a signal pathname
into the Full HDL Name field, you must click the Update button
to complete the paste operation and update the signal list.

Edge
Select Rising or Falling to specify either a rising-edge clock or a
falling-edge clock.

Period
You must either specify the clock period explicitly, or accept the
default period of 2.

If you specify an explicit clock period, you must enter a sample
time equal to or greater than 2 resolution units (ticks).

If the clock period (whether explicitly specified or defaulted) is not
an even integer, Simulink cannot create a 50% duty cycle, and

therefore Link for Incisive creates the falling edge at

clockperiod /2

(rounded down to the nearest integer).

7-17

HDL Cosimulation

7-18

Tcl Pane

W Function Block Parameters: HDL Cosimulation BEE

Cosirnulation of hardware components with Incisive(R). Inputs from Sirmulink{ R) are spplied to an Incisive signal. Outputs from

Sirnulink and Incisive Cosimulatior
’7 this block are detived from hardware sighals. Specify sighnal paths by their full hierarchical name in Incisive

Ports IEIncks |T|mescales Connection |TC\ |

Pre-simulation commancs:

force filter2d_v clk_enable 1 -after Ons

force filter2d_v reset 1 -after O ns 0 -after 1 ns
puts {Running Simulink Cosimulation block }
puts [elock format [olock seconds]]

Past-simulation cammancs:

puts fdone}
after 1000 {SimAsion -submit exit}

ak Cancel 2pply

Pre-simulation commands
Tecl commands to be executed before the Incisive simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box, or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an Incisive simulator Tecl script that
lists Tcl commands and then specify that file with the Incisive
simulator source command as follows:

source mycosimstartup.script_extension

Use of this field can range from something as simple as a
one-line echo command to confirm that a simulation is running
to a complex script that performs an extensive simulation
initialization and startup sequence.

HDL Cosimulation

Note The command string or Tel script that you specify for
this parameter cannot include commands that load an Incisive
simulator project or modify simulator state. For example, they
cannot include commands such as run, stop, or reset.

Post-simulation commands
Tecl commands to be executed after the Incisive simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an Incisive simulator Tecl script that
lists Tcl commands and then specify that file with the Incisive

simulator source command as follows:

source mycosimcleanup.script_extension

7-19

HDL Cosimulation

Notes

® You can include the exit command in an after simulation Tecl

script to force the Incisive simulator to shut down at the end of
a cosimulation session. To ensure that all other after simulation
Tecl commands specified for the model have an opportunity to
execute, specify all after simulation Tcl commands in a single
cosimulation block and place exit at the end of the command
string or Tcl script.

The following is an example of a Tcl script when the -gui
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {ncsim -submit exit}

This next example is of a Tcl exit script to use when the -tcl
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {exit}

¢ With the exception of exit, the command string or Tcl script

that you specify cannot include commands that load an Incisive
simulator project or modify simulator state. For example, they
cannot include commands such as run, stop, or reset.

7-20

To VCD File

Purpose
Library

Description

3 simulink.wcd

To VwCD File

Generate a value change dump (VCD) file
Link for Incisive

The To VCD File block generates a VCD file that contains information
about changes to signals connected to the block’s input ports and names
the file with the specified file name. VCD files can be useful during
design verification. Some examples of how you might apply VCD files
include

® For comparing results of multiple simulation runs, using the same or
different simulator environments

® Asinput to post-simulation analysis tools

® For porting areas of an existing design to a new design

In addition, VCD files include data that can be graphically displayed or

analyzed with postprocessing tools. Examples of postprocessing include

the extraction of data pertaining to a particular section of a design
hierarchy or data generated during a specific time interval.

Using the Block Parameters dialog box, you can specify the following:

¢ The file name to be used for the generated file

® The number of block input ports that are to receive signal data

VCD files can grow very large for larger designs or smaller designs
with longer simulation runs. However, the size of a VCD file generated
by the To VCD File block is limited only by the maximum number of
signals (and symbols) supported, which is 943 (830,584). Each bit maps
to one symbol.

For a description of the VCD file format, see “VCD File Format” on
page 4-45.

7-21

To VCD File

L] T —
Dlalog = Sink Block Parameters: To VCD File =iEles
Box —To WCD Fil

Generates a value change dump (WC D) file containing information about changes to signals
connected to the block's input ports. The WCD file name field specifies the name of the geterated
file.

— Parameter

WCD file name:
Isimulink.vcd

MNumber of input ports:
Jn

T

1 secondd in Simulink corresponds tol] |T|ck ;I in the HDL simulator

1 HOL tick iz defined as II vl Ins 'I

VCD file name
The file name to be used for the generated VCD file. If you specify
a file name only, Simulink places the file in your current MATLAB
directory. Specify a complete pathname to place the generated file
in a different location. If you specify the same name for multiple
To VCD File blocks, Simulink automatically adds a numeric
postfix to identify each instance uniquely.

If you want the generated file to have a .vcd file type extension,
you must specify it explicitly.

Caution Do not give the same file name to different VCD blocks.
Doing so results in invalid VCD files.

7-22

To VCD File

Number of input ports
The number of block input ports on which signal data is to be
collected. The block can handle up to 942 (830,584) signals, each of
which maps to a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals (and
symbols). This mapping occurs when the input port receives one
of the following:

¢ Vector of real numbers
¢ Fixed-point real number

Timescale
Choose an optimal timing relationship between Simulink and
the HDL simulator.

The timescale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator
time. This quantity of HDL simulator time can be expressed in
one of the following ways:

¢ In relative terms (i.e., as some number of Incisive simulator
ticks). In this case, the cosimulation is said to operate in
relative timing mode. Relative timing mode is the default.

To use relative mode, select Tick from the pop-up list at the
label in the HDL simulator, and enter the desired number of
ticks in the edit box at 1 second in Simulink corresponds
to. The default value is 1 Tick.

® In absolute units (such as milliseconds or nanoseconds). In
this case, the cosimulation is said to operate in absolute timing
mode.

To use absolute mode, select the desired resolution unit from
the pop-up list at the label in the HDL simulator (available
units are fs, ps, ns, us, ms, s), and enter the desired number
of resolution units in the edit box at 1 second in Simulink
corresponds to. Then, set the value of the HDL simulator

7-23

To VCD File

tick by selecting 1, 10, or 100 from the pop-up list at 1 HDL
Tick is defined as and the resolution unit from the pop-up
list at defined as .

7-24

A

Absolute timing mode 4-12
addresses, Internet 1-17
application software 1-19
application specific integrated circuits
(ASICs) 1-2
applications 1-3
coding Link for Incisive
overview of 2-2
programming Link for Incisive
overview of 2-2
arguments
for hdlsimmatlab command 6-2
for hdlsimulink command 6-3
for matlabcp command 6-5
for matlabtb command 6-10
for matlabtbeval command 6-16
arrays
converting to 2-12
indexing elements of 2-7
ASICs (application specific integrated
circuits) 1-2
Auto fill
in Ports pane of HDL Cosimulation
block 7-2
using in Ports pane 4-23

behavioral model 1-3
bit vector
converting for MATLAB 2-11
block input ports parameter
description of 7-2
mapping signals with 4-23
block latency 4-16
block library
description of 4-19
Link for Incisive 1-5
block output ports parameter

description of 7-2
mapping signals with 4-23
block Parameters dialog
for HDL Cosimulation block 4-22
Block Parameters dialog
for To VCD File block 4-42
block ports
mapping signals to 4-23
requirements for HDL Cosimulation
blocks 4-20
blocks
HDL Cosimulation
applying configuration settings
for 4-38
configuring 4-20
description of 7-2
To VCD File
configuring 4-42
description of 7-21
generating VCD files with 4-42
blocksets
for creating hardware models 4-5
for EDA applications 4-5
installing 1-20
breakpoints 3-19

C

callback specification 2-8
callback timing 3-11
-cancel option 6-10
checklists
environment requirements 1-12
HDL Cosimulation block
requirements 4-20
client
for MATLAB and HDL simulator links 1-6
for Simulink and HDL simulator links 1-7
client/server environment 1-6
clocks

Index-1

Index

requirements for HDL Cosimulation
blocks 4-20
specifying for HDL Cosimulation
blocks 4-33
Clocks pane
configuring block clocks with 4-33
description of 7-2
column-major numbering 2-7
comm status field
checking with hd1ldaemon function 3-5
description of 5-3
commands, HDL simulator 6-1
See also HDL simulator commands
commands, Incisive simulator 6-1
communication
configuring for blocks 4-31
features 1-5
initializing for HDL simulator and
MATLAB session 3-12
modes of 1-8
requirements for HDL Cosimulation
blocks 4-20
socket ports for 1-17
communication channel
checking identifier for 3-5
communication modes
checking 3-5
specifying for HDL Cosimulation
block 4-20
specifying with hdldaemon function 3-7
Communications Blockset
as optional software 1-19
using for EDA applications 4-5
components 1-5
composite data types
conversions of 2-7
configurations
deciding on 1-14
multiple-link 1-14
single-system 1-14

Index-2

valid for MATLAB and the HDL
simulator 1-15
valid for Simulink and the HDL
simulator 1-16
Connection pane
configuring block communication
with 4-31
description of 7-2
connections status field
checking with hdldaemon function 3-5
description of 5-3
connections, link
checking number of 3-5
TCP/IP socket 1-17
Continue button, MATLAB 3-19
Continue option 3-19
continuous signals 4-8
cosimulation 1-5
configuring a HDL Cosimulation block
for 4-20
controlling MATLAB 3-1
overview of 3-3
logging changes to signal values
during 4-42
requirements for 4-20
starting MATLAB 3-1
overview of 3-3
starting with Simulink 4-39
cosimulation block 4-20
See also HDL Cosimulation block
cosimulation environment 1-6
Cosimulation timing
absolute mode 7-2
relative mode 7-2

D

data types
conversions of 2-7
converting for HDL simulator 2-12

Index

converting for MATLAB 2-11
dbstop function 3-19
dec2mvl function
description of 5-2
delta time 4-16
demos 1-26
deposit
changing signals with 4-7
for iport parameter 2-8
with force commands 3-17
design process, hardware 1-3
dialogs
for HDL Cosimulation block 7-2
for To VCD File block 7-21
discrete blocks 4-8
do command 4-36
DO files
specifying for HDL Cosimulation
blocks 4-36
documentation overview 1-25
double values
as representation of time 3-11
converting for HDL simulator 2-12
converting for MATLAB 2-11
dspstartup M-file 4-18
duty cycle 4-33

EDA (Electronic Design Automation) 1-2
Electronic Design Automation (EDA) 1-2
End Simulation option, HDL simulator 3-20
enumerated data types

conversion of 2-7

converting to 2-12
environment requirements 1-12
environment, cosimulation 1-6
examples 4-5

dec2mvl function 5-2

hdldaemon function 5-3

hdlsimmatlab command 6-2

hdlsimulink command 6-3

matlabcp command 6-5

matlabtb command 6-10

matlabtbeval command 6-16

mvl2dec function 5-9

nclaunch function 5-10

nomatlabtb command 6-19

See also Manchester receiver Simulink
model

F
-falling option 6-10

specifying scheduling options with 3-12
falling-edge clocks

creating for HDL Cosimulation blocks 4-33

description of 7-2
specifying as scheduling options 3-10
specifying for HDL Cosimulation
block 4-20
Falling-edge clocks parameter
specifying block clocks with 4-33
features, product 1-5
field programmable gate arrays (FPGAs) 1-2
files
generating VCD 4-42
VCD 4-45
force command
applying simulation stimuli with 3-17
resetting clocks during cosimulation
with 4-39
FPGAs (field programmable gate arrays) 1-2
Frame-based processing 4-40
in cosimulation 4-40
performance improvements gained
from 4-40
requirements for use of 4-40
restrictions on use of 4-40
functions 5-1

Index-3

Index

resolution 4-7
See also MATLAB functions

G
Go Until Cursor option, MATLAB 3-19

H

hardware description language (HDL) 1-2
hardware design process 1-3
hardware model design
creating in Simulink 4-5
HDL (hardware description language) 1-2
HDL Cosimulation block
adding to a Simulink model 4-19
applying configuration settings for 4-38
black boxes representing 4-5
configuration requirements for 1-14
configuring 4-20
configuring clocks for 4-33
configuring communication for 4-31
configuring ports for 4-23
configuring Tcl commands for 4-36
description of 7-2
design decisions for 4-5
handling of signal values for 4-7
in Link for Incisive environment 1-6
opening Block Parameters dialog for 4-22
scaling simulation time for 4-8
valid configurations for 1-16
HDL Cosimulation block output ports 4-28
HDL design 4-3
HDL designs
coding for MATLAB verification 2-3
using port information for 2-9
validating 2-9
HDL models 1-3
adding to Simulink models 4-19
coding for MATLAB verification 2-3

Index-4

compiling 2-5
configuring Simulink for 4-18
cosimulation 1-3
naming 2-3
porting 4-42
running in Simulink 4-39
specifying ports for 2-3
testing in Simulink 4-39
verifying 1-3
verifying port direction modes for 2-9
See also HDL models
HDL simulator
handling of signal values for 4-7
initializing for MATLAB session 3-12
quitting 3-20
setting up during installation 1-21
simulation time for 4-8
specifying version of 3-9
starting from MATLAB 3-9
working with MATLAB links to 1-9
working with Simulink links to 1-10
HDL simulator commands
force
applying simulation stimuli with 3-17
resetting clocks during cosimulation
with 4-39
hdlsimmatlab
description of 6-2
matlabtb
initializing HDL simulator with 3-12
matlabtbeval
initializing HDL simulator with 3-12
specifying scheduling options with 3-10
vcd2wlf 4-42
hdldaemon function
checking link status of 3-5
configuration restrictions for 1-14
description of 5-3
starting 3-7
hdlsimdir property

Index

specifying with nclaunch function 3-9
hdlsimmatlab command
description of 6-2
hdlsimulink command
description of 6-3
help 1-25
Host name parameter
description of 7-2
specifying block communication with 4-31
hostnames
identifying Incisive simulator server 4-31
identifying MATLAB server 3-12
identifying server with 1-16

IN direction mode
verifying 2-9
Incisive simulator
as required software 1-19
in Link for Incisive environment 1-6
installing 1-20
Incisive simulator commands
hdlsimmatlab
description of 6-2
hdlsimulink
description of 6-3
matlabcp
description of 6-5
matlabtb
description of 6-10
matlabtbeval
description of 6-16
nomatlabtb 6-19
Incisive simulator running on this computer
parameter
description of 7-2
specifying block communication with 4-31
inout data type 2-3
INOUT direction mode

verifying 2-9
input 2-3
See also input ports
input data type 2-3
input ports
attaching to signals 4-7
for HDL model 2-3

for MATLAB component function 2-14

for test bench function 2-8

mapping signals to 4-23

simulation time for 4-8

specifying block 4-20
installation

of Link for Incisive 1-20

of related software 1-20
installation of Link for Incisive 1-12
Internet address 1-17

identifying server with 1-16

specifying 3-12

interprocess communication identifier 3-5

ipc_id status field

checking with hdldaemon function 3-5

description of 5-3
iport parameter 2-8

K

kill option
description of 5-3

L

latency, block 4-16
Link for Incisive
block library 1-5
using to add HDL to Simulink
with 4-19
blocks 1-14
definition of 1-2
installing 1-20

Index-5

Index

setting up the HDL simulator for 1-21
link status
checking MATLAB server 3-5
function for acquiring 5-3
links
MATLAB and the HDL simulator 1-6
Simulink and the HDL simulator 1-7

M

MATLAB
as required software 1-19
in Link for Incisive environment 1-6
installing 1-20
quitting 3-20
working with HDL simulator links to 1-9
MATLAB component functions
adding to MATLAB search path 2-16
defining 2-14
specifying required parameters for 2-14
MATLAB data types
conversion of 2-7
MATLAB functions 5-1
coding for HDL verification 2-6
dbstop 3-19
dec2mvl
description of 5-2
defining 2-8
hdldaemon 3-7
description of 5-3
mvl2dec
description of 5-9
naming 2-8
nclaunch
description of 5-10
programming for HDL verification 2-6
scheduling invocation of 3-10
specifying required parameters for 2-8
test bench 1-6
which 2-16

Index-6

MATLAB link sessions
controlling 3-3 3-19
monitoring 3-19
scheduling invocation of 3-10
starting 3-3
stopping 3-20
MATLAB search path 2-16
MATLAB server
checking link status with 3-5
configuration restrictions for 1-14
configurations for 1-15
function for invoking 1-6
identifying in a network configuration 1-16
starting 3-7
matlabcp command
description of 6-5
matlabtb command
description of 6-10
initializing HDL simulator for MATLAB
session 3-12
specifying scheduling options with 3-10
matlabtbeval command
description of 6-16
initializing HDL simulator for MATLAB
session 3-12
specifying scheduling options with 3-10
-mfunc option
specifying test bench or component
function with 3-12
with matlabcp command 6-5
with matlabtb command 6-10
with matlabtbeval command 6-16
models
compiling, see HDL models
getting port information of 2-8
modes
communication 3-7
port direction 2-9
multirate signals 4-15
mv12dec function

Index

description of 5-9

names
for HDL models 2-3
for test bench functions 2-8
shared memory communication
channel 3-5
verifying port 2-9
nclaunch function
description of 5-10
starting HDL simulator with 3-9
nclaunchdir property
with nclaunch function 5-10
network configuration 1-16
network environment 1-6
nomatlabtb command 6-19
Number of input ports parameter 7-21
configuring To VCD File block with 4-42
Number of output ports parameter
configuring To VCD File block with 4-42
description of 7-21
numeric data
converting for HDL simulator 2-12
converting for MATLAB 2-11

o

online help 1-25
oport parameter 2-8
options
for hdlsimulink command 6-3
for matlabcp command 6-5
for matlabtb command 6-10
for matlabtbeval command 6-16
kill 5-3
property
with hdldaemon function 5-3
with nclaunch function 5-10

status 5-3

OUT direction mode

verifying 2-9

output data type 2-3
output ports

for HDL model 2-3

for MATLAB component function 2-14
for test bench function 2-8

mapping signals to 4-23

simulation time for 4-8

specifying block 4-20

Output sample time parameter

P

description of 7-2
specifying sample time with 4-23

parameters

for HDL Cosimulation block 7-2

for To VCD File block 7-21

required for MATLAB component
functions 2-14

required for test bench functions 2-8

phase, clock 4-33
platform support 1-5

required 1-19

port names

verifying 2-9

Port number or service parameter

description of 7-2
specifying block communication with 4-31

port numbers 1-17

checking 3-5
specifying for HDL simulator 3-10
specifying for MATLAB server 3-7

portinfo parameter 2-8
portinfo structure 2-9

ports

getting information about 2-8
specifying direction modes for 2-3

Index-7

Index

specifying for HDL designs 2-3
specifying HDL data types for 2-3
using information about 2-9
verifying data type of 2-9
verifying direction modes for 2-9
Verilog data types 2-3
Ports pane
Auto fill option 7-2
configuring block ports with 4-23
description of 7-2
using Auto fill 4-23
ports, block
mapping signals to 4-23
requirements for 4-20
Post— simulation command parameter
specifying block Tcl commands with 4-36
postprocessing tools 4-42
Post—simulation command parameter
description of 7-2
Pre- simulation command parameter
specifying block simulation Tcl commands
with 4-36
Pre—simulation command parameter
description of 7-2
properties
for hdldaemon function 5-3
for nclaunch function 5-10
for starting MATLAB server 3-7
nclaunchdir
with nclaunch function 5-10
socket 5-3
socketsimulink 5-10
startupfile 5-10
tclstart
with nclaunch function 5-10
time
description of 5-3
property option
for hdldaemon function 5-3
for nclaunch function 5-10

Index-8

rate converter 4-15
real data
converting for HDL simulator 2-12
converting for MATLAB 2-11
real values, as time 3-11
Relative timing mode 4-10
-repeat option 6-5
specifying scheduling options with 3-12
requirements
application software 1-19
checking product 1-19
environment 1-12
for HDL Cosimulation block 4-20
platform 1-19
resolution functions 4-7
resolution limit 2-9
-rising option 6-5
specifying scheduling options with 3-12
rising-edge clocks
creating for HDL Cosimulation blocks 4-33
description of 7-2
specifying as scheduling options 3-10
specifying for HDL Cosimulation
block 4-20
Rising-edge clocks parameter
specifying block clocks with 4-33
run command 3-19
Run option, MATLAB 3-19

S

sample periods 4-5
See also sample times
sample times 4-16
design decisions for 4-5
handling across simulation domains 4-7
specifying for block output ports 4-23
Sample-based processing 4-40
Save and Run option, MATLAB 3-19

Index

scalar data types how Simulink drives 4-7
conversions of 2-7 logging changes to 4-42
scheduling options 3-10 logging changes to values of 4-42
script mapping to block ports 4-23
HDL simulator setup 1-21 multirate 4-15
search path 2-16 signed data 2-11
sensitivity lists 3-10 simulation analysis 4-42
-sensitivity option 6-5 simulation time 2-8
specifying scheduling options with 3-12 guidelines for 4-8
server activation 5-3 representation of 4-8
server shutdown 5-3 scaling of 4-8
server, MATLAB simulations
checking link status of MATLAB 3-5 comparing results of 4-42
for MATLAB and HDL simulator links 1-6 ending 3-20
for Simulink and HDL simulator links 1-7 logging changes to signal values
identifying in a network configuration 1-16 during 4-42
starting MATLAB 3-7 quitting 3-20
Set/Clear Breakpoint option, MATLAB 3-19 simulator resolution limit 2-9
shared memory communication 1-8 simulators
as a configuration option 1-14 handling of signal values between 4-7
specifying for HDL Cosimulation Simulink
blocks 4-31 as optional software 1-19
specifying with hdldaemon function 3-7 configuration restrictions for 1-14
Shared memory parameter configuring for HDL models 4-18
description of 7-2 creating hardware model designs with 4-5
specifying block communication with 4-31 driving cosimulation signals with 4-7
signal pathnames in Link for Incisive environment 1-6
displaying 4-23 installing 1-20
specifying for block clocks 4-33 simulation time for 4-8
specifying for block ports 4-23 using with HDL simulator 4-1
Signal Processing Blockset working with HDL simulator links to 1-10
as optional software 1-19 Simulink Fixed Point
using for EDA applications 4-5 as optional software 1-19
signals using for EDA applications 4-5
continuous 4-8 Simulink models
defining ports for 2-3 adding HDL models to 4-19
driven by multiple sources 4-7 sink device
exchanging between simulation adding to a Simulink model 4-19
domains 4-7 specifying block ports for 4-23
handling across simulation domains 4-7 specifying clocks for 4-33

Index-9

specifying communication for 4-31
specifying Tcl commands for 4-36
socket numbers 3-5
See also port numbers
-socket option
specifying TCP/IP socket with 3-12
with hdlsimulink command 6-3
with matlabcp command 6-5
with matlabtb command 6-10
with matlabtbeval command 6-16
socket port numbers 1-17
as a networking requirement 1-16
checking 3-5
specifying for HDL Cosimulation
blocks 4-31
specifying with -socket option 3-12
socket property
description of 5-3
specifying with hdldaemon function 3-7
sockets 1-8
See also TCP/IP socket communication
socketsimulink property
description of 5-10
software
installing 1-20
optional 1-19
required 1-19
Solaris 1-5
as a required platform 1-19
source device
adding to a Simulink model 4-19
specifying block ports for 4-23
specifying clocks for 4-33
specifying communication for 4-31
specifying Tcl commands for 4-36
standard logic data 2-11
standard logic vectors
converting for HDL simulator 2-12
converting for MATLAB 2-11
start time 4-8

Index-10

startup commands, HDL simulator 3-9
startupfile property

description of 5-10

specifying with nclaunch function 3-9
status option

checking value of 3-5

description of 5-3
status, link 3-5
Step button

in MATLAB 3-19
Step-In button, MATLAB 3-19
Step-Out button, MATLAB 3-19
stimuli, block internal 4-33
stop time 4-8
strings, time value 3-11

T

Tecl commands
added to script for execution at
startup 1-21

added to startup script via nclaunch 5-10

configuring for block simulation 4-36
for HDL simulator 6-1
hdlsimmatlab 6-2
hdlsimulink 6-3
matlabcp 6-5
matlabtb 6-10
matlabtbeval 6-16
nomatlabtb 6-19
passed to simulator from hdldaemon 5-3
post-simulation
using set_param 4-36
pre-simulation
using set_param 4-36
requirements for HDL Cosimulation
blocks 4-20

specified in Tcl pane of HDL Cosimulation

block 7-2

Index

specifying for HDL Cosimulation
block 4-20
specifying with nclaunch function 3-9
specifying with tclstart property 3-9
when used with MATLAB 1-9
when used with Simulink 1-10
Tcl pane
description of 7-2
tclstart property
specifying with nclaunch function 3-9
with nclaunch function 5-10
TCP/IP networking protocol 1-8
as a networking requirement 1-16
See also TCP/IP socket communication
TCP/TP socket communication
as a communication option 1-14
feature 1-5
mode 1-8
specifying with hdldaemon function 3-7
TCP/TIP socket ports 1-17
specifying for HDL Cosimulation
blocks 4-31
specifying with -socket option 3-12
test bench functions
adding to MATLAB search path 2-16
coding for HDL verification 2-6
defining 2-8
naming 2-8
programming for HDL verification 2-6
specifying required parameters for 2-8
test bench sessions
logging changes to signal values
during 4-42
, see MATLAB link sessions
test benches 1-5
See also test bench functions
time 4-8
callback 2-8
delta 4-16

simulation 2-8
guidelines for 4-8
representation of 4-8
See also time values
time property
description of 5-3
setting return time type with 3-7
time scale, VCD file 4-45
time units 3-12
time values 3-12
specifying as scheduling options 3-10
specifying with hdldaemon function 3-7
Timescales pane
description of 7-2
timing errors 4-8
Timing mode
absolute 4-29
configuring for cosimulation 4-29
relative 4-29
tnext parameter 2-8
controlling callback timing with 3-11
specifying as scheduling options 3-10
time representations for 3-11
tnow parameter 2-8
To VCD File block 1-5
configuring 4-42
description of 7-21
generating VCD files with 4-42
uses of 1-10
Tool Command Language, see Tcl commands
tools, postprocessing 4-42
tscale parameter 2-9
tutorials 1-26

V)

unsigned data 2-11
unsupported data types 2-3
users, Link for Incisive 1-4

Index-11

Index

\"

value change dump (VCD) files, see VCD files

VCD file name parameter

configuring To VCD File block with 4-42

description of 7-21
VCD files 1-5
format of 4-45
generating 4-42
using 4-42
vcd2wlf command 4-42
vectors
converting for MATLAB 2-11
converting to 2-12
verification
coding functions for 2-6
hardware model 1-5
verification sessions
logging changes to signal values
during 4-42
monitoring 3-19
running 3-19
stopping 3-20
Verilog data types

Index-12

conversion of 2-7
Verilog models 1-3
See also HDL models
visualization
coding functions for 2-6
overview of 2-6

w

Wave Log Format (WLF) files 4-42
wave window, Incisive simulator 4-23
waveform files 4-42
which function 2-16
Windows 2000 1-5

as a required platform 1-19
Windows XP 1-5

as a required platform 1-19
WLF files 4-42

y 4
zero-order hold 4-8

	toc
	Getting Started
	What Is Link for Incisive?
	Typical Applications
	Expected Users
	Key Features
	The Cosimulation Environment
	MATLAB and HDL Simulator Links
	Simulink and HDL Simulator Links

	Modes of Communication
	Working with MATLAB and the HDL Simulator
	Working with Simulink and the HDL Simulator

	Installation and Setup
	What Are Your Environment Requirements?
	Deciding on a Configuration
	MATLAB
	Simulink

	Identifying a Server in a Network Configuration
	Choosing TCP/IP Socket Ports
	Checking Product Requirements
	Installing Related Application Software
	Installing Link for Incisive
	Setting Up the HDL Simulator for Use with Link for Incisive
	Setting Up Link for Incisive for Use with the Incisive Simulator
	Setting Up Link for Incisive for Use with the Incisive Simulator

	Getting Help with Link for Incisive
	Documentation Overview
	Online Help
	Demos and Tutorials

	Coding a Link for Incisive MATLAB Application
	Overview
	Coding HDL Designs for MATLAB Verification
	Steps for Coding HDL Models

	Compiling the HDL Model
	Coding a MATLAB Test Bench Function
	Overview of the Steps for Coding a MATLAB Test Bench Function
	Verilog Data Type Conversions
	Array Indexing Differences Between MATLAB and HDL

	Naming a MATLAB Test Bench Function
	Passing Parameters to and from the MATLAB Function
	Gaining Access to and Applying Port Information
	Converting Data for Manipulation
	Converting Data for Return to the HDL Simulator

	Coding a MATLAB Component Function
	Function Definition and Parameters

	Placing a MATLAB Test Bench or Component Function on the MATLAB

	Starting and Controlling MATLAB Link Sessions
	Overview
	Checking the MATLAB Server's Link Status
	Starting the MATLAB Server
	Starting the HDL Simulator for Use with MATLAB
	Deciding on MATLAB Link Session Scheduling Options
	Controlling Callback Timing from a MATLAB Test Bench or Componen
	Initializing the HDL Simulator for a MATLAB Link Session
	Applying Stimuli with the HDL Simulator force Command
	Running and Monitoring a MATLAB Link Session
	Stopping a MATLAB Link Session

	Modeling and Verifying an HDL Design with Simulink
	Overview
	Creating a Hardware Model Design in Simulink
	Handling Signal Values Across Simulators
	How Simulink Drives Cosimulation Signals
	Representation of Simulation Time
	Defining the Simulink and HDL Simulator Timing Relationship
	Relative Timing Mode
	Absolute Timing Mode
	Timing Mode Usage Restrictions
	Setting HDL Cosimulation Block Port Sample Times

	Handling Multirate Signals
	Clock Signal Latency
	Block Simulation Latency

	Configuring Simulink for HDL Models
	Adding the HDL Representation of a Model Component into a Simuli
	Configuring an HDL Cosimulation Block
	What Are Your HDL Cosimulation Block Requirements?
	Opening the Block Parameters Dialog Box
	Mapping HDL Signals to Block Ports
	Entering Signal Information Manually
	Obtaining Signal Information Automatically from the Incisive Sim

	Specifying Data Types for Output Ports
	Configuring the Simulink and Incisive Simulator Timing Relations
	Specifying a Relative Timing Relationship
	Specifying an Absolute Timing Relationship

	Configuring the Communication Link
	Creating Optional Clocks
	Executing Tcl Commands Before and After Cosimulation
	Specifying Pre- and Post-Simulation Tcl Commands with HDL Cosimu
	Specifying Pre- and Post-Simulation Tcl Commands with Simulink C

	Applying Your Block Parameters Configuration Settings

	Running and Testing a Cosimulation Model in Simulink
	Using Frame-Based Processing in Cosimulation
	Overview
	Using Frame-Based Processing
	Requirements and Restrictions for Using Frame-Based Signals

	Using a Value Change Dump File for Design Verification
	Generating a VCD File
	VCD File Format

	MATLAB Functions — Alphabetical List
	HDL Simulator Tcl Commands — Alphabetical List
	Simulink Blocks — Alphabetical List
	Index

	tables
	Environment Requirements Checklist
	Verilog-to-MATLAB Data Type Conversions
	HDL Port Information
	Required Data Conversions
	Verilog Conversions for Incisive Simulators
	Time Representations for tnext Parameter
	Simulation Scheduling Options
	HDL Cosimulation Block Requirements Checklist
	Examples of Generated VCD File Format

